Tracing the geographical origin of Argentinean lemon juices based on trace element profiles using advanced chemometric techniques

Autores
Gaiad, José Emilio; Hidalgo, Melisa Jazmin; Villafañe, Roxana Noelia; Marchevsky, Eduardo Jorge; Pellerano, Roberto Gerardo
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This study examines the application of chemometric techniques associated with trace element concentrations for origin evaluation of lemon juice samples. Seventy-four lemon juice samples from three different provinces of Argentina were evaluated according to their microelement contents to identify differences in patterns of elements in the three provinces. Inductively coupled plasma mass spectrometry (ICP-MS) was used for the determination of twenty-five elements (Ag, Al, As, Ba, Bi, Co, Cr, Cu, Fe, Ga, In, La, Li, Mn, Mo, Ni, Rb, Sb, Sc, Se, Sn, Sr, Tl, V, and Zn). Once the analytical data were collected, supervised pattern recognition techniques were applied to construct classification/discrimination rules to predict the origin of samples on the basis of their profiles of trace elements. Namely, linear discriminant analysis (LDA), partial least square discriminant analysis (PLS-DA), k-nearest neighbors (k-NN), random forest (RF), and support vector machine with radial basis function Kernel (SVM). The results indicated that it was feasible to attribute unknown lemon juice samples to its geographical origin. SVM had better performance compared to RF, k-NN, LDA and PLS-DA, listed in descending order. Eventually, this study verifies that trace element pattern is a powerful geographical indicator when identifying the origin of lemon juice samples by analyzing trace element data with the help of SVM technique. This level of accuracy provides an interesting foundation to propose the combination of trace element contents with SVM technique as a valuable tool to evaluate the geographical origin of lemon juice samples produced in Argentina.
Fil: Gaiad, José Emilio. Universidad Nacional del Nordeste; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Hidalgo, Melisa Jazmin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. Universidad Nacional del Nordeste; Argentina
Fil: Villafañe, Roxana Noelia. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina
Fil: Marchevsky, Eduardo Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina. Universidad Nacional de San Luis; Argentina
Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. Universidad Nacional del Nordeste; Argentina
Materia
CHEMOMETRICS
CITRUS LIMON
GEOGRAPHICAL ORIGIN
ICP-MS
MULTI-ELEMENT ANALYSIS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/37779

id CONICETDig_7a63ef384092bc275481ddcf1a99b559
oai_identifier_str oai:ri.conicet.gov.ar:11336/37779
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Tracing the geographical origin of Argentinean lemon juices based on trace element profiles using advanced chemometric techniquesGaiad, José EmilioHidalgo, Melisa JazminVillafañe, Roxana NoeliaMarchevsky, Eduardo JorgePellerano, Roberto GerardoCHEMOMETRICSCITRUS LIMONGEOGRAPHICAL ORIGINICP-MSMULTI-ELEMENT ANALYSIShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1This study examines the application of chemometric techniques associated with trace element concentrations for origin evaluation of lemon juice samples. Seventy-four lemon juice samples from three different provinces of Argentina were evaluated according to their microelement contents to identify differences in patterns of elements in the three provinces. Inductively coupled plasma mass spectrometry (ICP-MS) was used for the determination of twenty-five elements (Ag, Al, As, Ba, Bi, Co, Cr, Cu, Fe, Ga, In, La, Li, Mn, Mo, Ni, Rb, Sb, Sc, Se, Sn, Sr, Tl, V, and Zn). Once the analytical data were collected, supervised pattern recognition techniques were applied to construct classification/discrimination rules to predict the origin of samples on the basis of their profiles of trace elements. Namely, linear discriminant analysis (LDA), partial least square discriminant analysis (PLS-DA), k-nearest neighbors (k-NN), random forest (RF), and support vector machine with radial basis function Kernel (SVM). The results indicated that it was feasible to attribute unknown lemon juice samples to its geographical origin. SVM had better performance compared to RF, k-NN, LDA and PLS-DA, listed in descending order. Eventually, this study verifies that trace element pattern is a powerful geographical indicator when identifying the origin of lemon juice samples by analyzing trace element data with the help of SVM technique. This level of accuracy provides an interesting foundation to propose the combination of trace element contents with SVM technique as a valuable tool to evaluate the geographical origin of lemon juice samples produced in Argentina.Fil: Gaiad, José Emilio. Universidad Nacional del Nordeste; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; ArgentinaFil: Hidalgo, Melisa Jazmin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. Universidad Nacional del Nordeste; ArgentinaFil: Villafañe, Roxana Noelia. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; ArgentinaFil: Marchevsky, Eduardo Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina. Universidad Nacional de San Luis; ArgentinaFil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. Universidad Nacional del Nordeste; ArgentinaElsevier Science2016-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/37779Gaiad, José Emilio; Hidalgo, Melisa Jazmin; Villafañe, Roxana Noelia; Marchevsky, Eduardo Jorge; Pellerano, Roberto Gerardo; Tracing the geographical origin of Argentinean lemon juices based on trace element profiles using advanced chemometric techniques; Elsevier Science; Microchemical Journal; 129; 11-2016; 243-2480026-265XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0026265X16301382info:eu-repo/semantics/altIdentifier/doi/10.1016/j.microc.2016.07.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:45:35Zoai:ri.conicet.gov.ar:11336/37779instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:45:35.292CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Tracing the geographical origin of Argentinean lemon juices based on trace element profiles using advanced chemometric techniques
title Tracing the geographical origin of Argentinean lemon juices based on trace element profiles using advanced chemometric techniques
spellingShingle Tracing the geographical origin of Argentinean lemon juices based on trace element profiles using advanced chemometric techniques
Gaiad, José Emilio
CHEMOMETRICS
CITRUS LIMON
GEOGRAPHICAL ORIGIN
ICP-MS
MULTI-ELEMENT ANALYSIS
title_short Tracing the geographical origin of Argentinean lemon juices based on trace element profiles using advanced chemometric techniques
title_full Tracing the geographical origin of Argentinean lemon juices based on trace element profiles using advanced chemometric techniques
title_fullStr Tracing the geographical origin of Argentinean lemon juices based on trace element profiles using advanced chemometric techniques
title_full_unstemmed Tracing the geographical origin of Argentinean lemon juices based on trace element profiles using advanced chemometric techniques
title_sort Tracing the geographical origin of Argentinean lemon juices based on trace element profiles using advanced chemometric techniques
dc.creator.none.fl_str_mv Gaiad, José Emilio
Hidalgo, Melisa Jazmin
Villafañe, Roxana Noelia
Marchevsky, Eduardo Jorge
Pellerano, Roberto Gerardo
author Gaiad, José Emilio
author_facet Gaiad, José Emilio
Hidalgo, Melisa Jazmin
Villafañe, Roxana Noelia
Marchevsky, Eduardo Jorge
Pellerano, Roberto Gerardo
author_role author
author2 Hidalgo, Melisa Jazmin
Villafañe, Roxana Noelia
Marchevsky, Eduardo Jorge
Pellerano, Roberto Gerardo
author2_role author
author
author
author
dc.subject.none.fl_str_mv CHEMOMETRICS
CITRUS LIMON
GEOGRAPHICAL ORIGIN
ICP-MS
MULTI-ELEMENT ANALYSIS
topic CHEMOMETRICS
CITRUS LIMON
GEOGRAPHICAL ORIGIN
ICP-MS
MULTI-ELEMENT ANALYSIS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This study examines the application of chemometric techniques associated with trace element concentrations for origin evaluation of lemon juice samples. Seventy-four lemon juice samples from three different provinces of Argentina were evaluated according to their microelement contents to identify differences in patterns of elements in the three provinces. Inductively coupled plasma mass spectrometry (ICP-MS) was used for the determination of twenty-five elements (Ag, Al, As, Ba, Bi, Co, Cr, Cu, Fe, Ga, In, La, Li, Mn, Mo, Ni, Rb, Sb, Sc, Se, Sn, Sr, Tl, V, and Zn). Once the analytical data were collected, supervised pattern recognition techniques were applied to construct classification/discrimination rules to predict the origin of samples on the basis of their profiles of trace elements. Namely, linear discriminant analysis (LDA), partial least square discriminant analysis (PLS-DA), k-nearest neighbors (k-NN), random forest (RF), and support vector machine with radial basis function Kernel (SVM). The results indicated that it was feasible to attribute unknown lemon juice samples to its geographical origin. SVM had better performance compared to RF, k-NN, LDA and PLS-DA, listed in descending order. Eventually, this study verifies that trace element pattern is a powerful geographical indicator when identifying the origin of lemon juice samples by analyzing trace element data with the help of SVM technique. This level of accuracy provides an interesting foundation to propose the combination of trace element contents with SVM technique as a valuable tool to evaluate the geographical origin of lemon juice samples produced in Argentina.
Fil: Gaiad, José Emilio. Universidad Nacional del Nordeste; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina
Fil: Hidalgo, Melisa Jazmin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. Universidad Nacional del Nordeste; Argentina
Fil: Villafañe, Roxana Noelia. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina
Fil: Marchevsky, Eduardo Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina. Universidad Nacional de San Luis; Argentina
Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Química Básica y Aplicada del Nordeste Argentino. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. Universidad Nacional del Nordeste; Argentina
description This study examines the application of chemometric techniques associated with trace element concentrations for origin evaluation of lemon juice samples. Seventy-four lemon juice samples from three different provinces of Argentina were evaluated according to their microelement contents to identify differences in patterns of elements in the three provinces. Inductively coupled plasma mass spectrometry (ICP-MS) was used for the determination of twenty-five elements (Ag, Al, As, Ba, Bi, Co, Cr, Cu, Fe, Ga, In, La, Li, Mn, Mo, Ni, Rb, Sb, Sc, Se, Sn, Sr, Tl, V, and Zn). Once the analytical data were collected, supervised pattern recognition techniques were applied to construct classification/discrimination rules to predict the origin of samples on the basis of their profiles of trace elements. Namely, linear discriminant analysis (LDA), partial least square discriminant analysis (PLS-DA), k-nearest neighbors (k-NN), random forest (RF), and support vector machine with radial basis function Kernel (SVM). The results indicated that it was feasible to attribute unknown lemon juice samples to its geographical origin. SVM had better performance compared to RF, k-NN, LDA and PLS-DA, listed in descending order. Eventually, this study verifies that trace element pattern is a powerful geographical indicator when identifying the origin of lemon juice samples by analyzing trace element data with the help of SVM technique. This level of accuracy provides an interesting foundation to propose the combination of trace element contents with SVM technique as a valuable tool to evaluate the geographical origin of lemon juice samples produced in Argentina.
publishDate 2016
dc.date.none.fl_str_mv 2016-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/37779
Gaiad, José Emilio; Hidalgo, Melisa Jazmin; Villafañe, Roxana Noelia; Marchevsky, Eduardo Jorge; Pellerano, Roberto Gerardo; Tracing the geographical origin of Argentinean lemon juices based on trace element profiles using advanced chemometric techniques; Elsevier Science; Microchemical Journal; 129; 11-2016; 243-248
0026-265X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/37779
identifier_str_mv Gaiad, José Emilio; Hidalgo, Melisa Jazmin; Villafañe, Roxana Noelia; Marchevsky, Eduardo Jorge; Pellerano, Roberto Gerardo; Tracing the geographical origin of Argentinean lemon juices based on trace element profiles using advanced chemometric techniques; Elsevier Science; Microchemical Journal; 129; 11-2016; 243-248
0026-265X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0026265X16301382
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.microc.2016.07.002
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082965880176640
score 13.22299