Dynamics of two planets in co-orbital motion
- Autores
- Giuppone, Cristian Andrés; Beauge, Cristian; Michtchenko, T. A.; Ferraz Mello, S.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the stability regions and families of periodic orbits of two planets locked in a coorbital configuration. We consider different ratios of planetary masses and orbital eccentricities; we also assume that both planets share the same orbital plane. Initially, we perform numerical simulations over a grid of osculating initial conditions to map the regions of stable/chaotic motion and identify equilibrium solutions. These results are later analysed in more detail using a semi-analytical model. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L4 and L5, we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (λ, ) = (±60◦, ∓120◦), where λ is the difference in mean longitudes and is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as ∼0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L4 and L5, we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (Δλ, Δϖ) = (+/-60°, -/+120°), where Δλ is the difference in mean longitudes and Δϖ is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as ~0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles.
Fil: Giuppone, Cristian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Michtchenko, T. A.. Universidade de Sao Paulo; Brasil
Fil: Ferraz Mello, S.. Universidade de Sao Paulo; Brasil - Materia
-
Celestial mechanics
Methods: numerical & analytical
Planets and satellites: general - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/277263
Ver los metadatos del registro completo
| id |
CONICETDig_79dafa1b9e467de7f087c94803a0ce6f |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/277263 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Dynamics of two planets in co-orbital motionGiuppone, Cristian AndrésBeauge, CristianMichtchenko, T. A.Ferraz Mello, S.Celestial mechanicsMethods: numerical & analyticalPlanets and satellites: generalhttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1We study the stability regions and families of periodic orbits of two planets locked in a coorbital configuration. We consider different ratios of planetary masses and orbital eccentricities; we also assume that both planets share the same orbital plane. Initially, we perform numerical simulations over a grid of osculating initial conditions to map the regions of stable/chaotic motion and identify equilibrium solutions. These results are later analysed in more detail using a semi-analytical model. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L4 and L5, we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (λ, ) = (±60◦, ∓120◦), where λ is the difference in mean longitudes and is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as ∼0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L4 and L5, we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (Δλ, Δϖ) = (+/-60°, -/+120°), where Δλ is the difference in mean longitudes and Δϖ is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as ~0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles.Fil: Giuppone, Cristian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Michtchenko, T. A.. Universidade de Sao Paulo; BrasilFil: Ferraz Mello, S.. Universidade de Sao Paulo; BrasilWiley Blackwell Publishing, Inc2010-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/octet-streamapplication/pdfhttp://hdl.handle.net/11336/277263Giuppone, Cristian Andrés; Beauge, Cristian; Michtchenko, T. A.; Ferraz Mello, S.; Dynamics of two planets in co-orbital motion; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 407; 1; 9-2010; 390-3980035-8711CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/407/1/390/985383info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2010.16904.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:11:55Zoai:ri.conicet.gov.ar:11336/277263instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:11:55.61CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Dynamics of two planets in co-orbital motion |
| title |
Dynamics of two planets in co-orbital motion |
| spellingShingle |
Dynamics of two planets in co-orbital motion Giuppone, Cristian Andrés Celestial mechanics Methods: numerical & analytical Planets and satellites: general |
| title_short |
Dynamics of two planets in co-orbital motion |
| title_full |
Dynamics of two planets in co-orbital motion |
| title_fullStr |
Dynamics of two planets in co-orbital motion |
| title_full_unstemmed |
Dynamics of two planets in co-orbital motion |
| title_sort |
Dynamics of two planets in co-orbital motion |
| dc.creator.none.fl_str_mv |
Giuppone, Cristian Andrés Beauge, Cristian Michtchenko, T. A. Ferraz Mello, S. |
| author |
Giuppone, Cristian Andrés |
| author_facet |
Giuppone, Cristian Andrés Beauge, Cristian Michtchenko, T. A. Ferraz Mello, S. |
| author_role |
author |
| author2 |
Beauge, Cristian Michtchenko, T. A. Ferraz Mello, S. |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Celestial mechanics Methods: numerical & analytical Planets and satellites: general |
| topic |
Celestial mechanics Methods: numerical & analytical Planets and satellites: general |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.7 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We study the stability regions and families of periodic orbits of two planets locked in a coorbital configuration. We consider different ratios of planetary masses and orbital eccentricities; we also assume that both planets share the same orbital plane. Initially, we perform numerical simulations over a grid of osculating initial conditions to map the regions of stable/chaotic motion and identify equilibrium solutions. These results are later analysed in more detail using a semi-analytical model. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L4 and L5, we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (λ, ) = (±60◦, ∓120◦), where λ is the difference in mean longitudes and is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as ∼0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L4 and L5, we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (Δλ, Δϖ) = (+/-60°, -/+120°), where Δλ is the difference in mean longitudes and Δϖ is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as ~0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles. Fil: Giuppone, Cristian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina Fil: Michtchenko, T. A.. Universidade de Sao Paulo; Brasil Fil: Ferraz Mello, S.. Universidade de Sao Paulo; Brasil |
| description |
We study the stability regions and families of periodic orbits of two planets locked in a coorbital configuration. We consider different ratios of planetary masses and orbital eccentricities; we also assume that both planets share the same orbital plane. Initially, we perform numerical simulations over a grid of osculating initial conditions to map the regions of stable/chaotic motion and identify equilibrium solutions. These results are later analysed in more detail using a semi-analytical model. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L4 and L5, we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (λ, ) = (±60◦, ∓120◦), where λ is the difference in mean longitudes and is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as ∼0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L4 and L5, we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (Δλ, Δϖ) = (+/-60°, -/+120°), where Δλ is the difference in mean longitudes and Δϖ is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as ~0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/277263 Giuppone, Cristian Andrés; Beauge, Cristian; Michtchenko, T. A.; Ferraz Mello, S.; Dynamics of two planets in co-orbital motion; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 407; 1; 9-2010; 390-398 0035-8711 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/277263 |
| identifier_str_mv |
Giuppone, Cristian Andrés; Beauge, Cristian; Michtchenko, T. A.; Ferraz Mello, S.; Dynamics of two planets in co-orbital motion; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 407; 1; 9-2010; 390-398 0035-8711 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/407/1/390/985383 info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2010.16904.x |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/octet-stream application/pdf |
| dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
| publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852334899994820608 |
| score |
12.952241 |