Dynamics of two planets in co-orbital motion

Autores
Giuppone, Cristian Andrés; Beauge, Cristian; Michtchenko, T. A.; Ferraz Mello, S.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the stability regions and families of periodic orbits of two planets locked in a coorbital configuration. We consider different ratios of planetary masses and orbital eccentricities; we also assume that both planets share the same orbital plane. Initially, we perform numerical simulations over a grid of osculating initial conditions to map the regions of stable/chaotic motion and identify equilibrium solutions. These results are later analysed in more detail using a semi-analytical model. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L4 and L5, we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (λ, ) = (±60◦, ∓120◦), where λ is the difference in mean longitudes and is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as ∼0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L4 and L5, we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (Δλ, Δϖ) = (+/-60°, -/+120°), where Δλ is the difference in mean longitudes and Δϖ is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as ~0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles.
Fil: Giuppone, Cristian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Michtchenko, T. A.. Universidade de Sao Paulo; Brasil
Fil: Ferraz Mello, S.. Universidade de Sao Paulo; Brasil
Materia
Celestial mechanics
Methods: numerical & analytical
Planets and satellites: general
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/277263

id CONICETDig_79dafa1b9e467de7f087c94803a0ce6f
oai_identifier_str oai:ri.conicet.gov.ar:11336/277263
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dynamics of two planets in co-orbital motionGiuppone, Cristian AndrésBeauge, CristianMichtchenko, T. A.Ferraz Mello, S.Celestial mechanicsMethods: numerical & analyticalPlanets and satellites: generalhttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1We study the stability regions and families of periodic orbits of two planets locked in a coorbital configuration. We consider different ratios of planetary masses and orbital eccentricities; we also assume that both planets share the same orbital plane. Initially, we perform numerical simulations over a grid of osculating initial conditions to map the regions of stable/chaotic motion and identify equilibrium solutions. These results are later analysed in more detail using a semi-analytical model. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L4 and L5, we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (λ, ) = (±60◦, ∓120◦), where λ is the difference in mean longitudes and is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as ∼0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L4 and L5, we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (Δλ, Δϖ) = (+/-60°, -/+120°), where Δλ is the difference in mean longitudes and Δϖ is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as ~0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles.Fil: Giuppone, Cristian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Michtchenko, T. A.. Universidade de Sao Paulo; BrasilFil: Ferraz Mello, S.. Universidade de Sao Paulo; BrasilWiley Blackwell Publishing, Inc2010-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/octet-streamapplication/pdfhttp://hdl.handle.net/11336/277263Giuppone, Cristian Andrés; Beauge, Cristian; Michtchenko, T. A.; Ferraz Mello, S.; Dynamics of two planets in co-orbital motion; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 407; 1; 9-2010; 390-3980035-8711CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/407/1/390/985383info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2010.16904.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:11:55Zoai:ri.conicet.gov.ar:11336/277263instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:11:55.61CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dynamics of two planets in co-orbital motion
title Dynamics of two planets in co-orbital motion
spellingShingle Dynamics of two planets in co-orbital motion
Giuppone, Cristian Andrés
Celestial mechanics
Methods: numerical & analytical
Planets and satellites: general
title_short Dynamics of two planets in co-orbital motion
title_full Dynamics of two planets in co-orbital motion
title_fullStr Dynamics of two planets in co-orbital motion
title_full_unstemmed Dynamics of two planets in co-orbital motion
title_sort Dynamics of two planets in co-orbital motion
dc.creator.none.fl_str_mv Giuppone, Cristian Andrés
Beauge, Cristian
Michtchenko, T. A.
Ferraz Mello, S.
author Giuppone, Cristian Andrés
author_facet Giuppone, Cristian Andrés
Beauge, Cristian
Michtchenko, T. A.
Ferraz Mello, S.
author_role author
author2 Beauge, Cristian
Michtchenko, T. A.
Ferraz Mello, S.
author2_role author
author
author
dc.subject.none.fl_str_mv Celestial mechanics
Methods: numerical & analytical
Planets and satellites: general
topic Celestial mechanics
Methods: numerical & analytical
Planets and satellites: general
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.7
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the stability regions and families of periodic orbits of two planets locked in a coorbital configuration. We consider different ratios of planetary masses and orbital eccentricities; we also assume that both planets share the same orbital plane. Initially, we perform numerical simulations over a grid of osculating initial conditions to map the regions of stable/chaotic motion and identify equilibrium solutions. These results are later analysed in more detail using a semi-analytical model. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L4 and L5, we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (λ, ) = (±60◦, ∓120◦), where λ is the difference in mean longitudes and is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as ∼0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L4 and L5, we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (Δλ, Δϖ) = (+/-60°, -/+120°), where Δλ is the difference in mean longitudes and Δϖ is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as ~0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles.
Fil: Giuppone, Cristian Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina
Fil: Michtchenko, T. A.. Universidade de Sao Paulo; Brasil
Fil: Ferraz Mello, S.. Universidade de Sao Paulo; Brasil
description We study the stability regions and families of periodic orbits of two planets locked in a coorbital configuration. We consider different ratios of planetary masses and orbital eccentricities; we also assume that both planets share the same orbital plane. Initially, we perform numerical simulations over a grid of osculating initial conditions to map the regions of stable/chaotic motion and identify equilibrium solutions. These results are later analysed in more detail using a semi-analytical model. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L4 and L5, we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (λ, ) = (±60◦, ∓120◦), where λ is the difference in mean longitudes and is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as ∼0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L4 and L5, we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (Δλ, Δϖ) = (+/-60°, -/+120°), where Δλ is the difference in mean longitudes and Δϖ is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as ~0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles.
publishDate 2010
dc.date.none.fl_str_mv 2010-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/277263
Giuppone, Cristian Andrés; Beauge, Cristian; Michtchenko, T. A.; Ferraz Mello, S.; Dynamics of two planets in co-orbital motion; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 407; 1; 9-2010; 390-398
0035-8711
CONICET Digital
CONICET
url http://hdl.handle.net/11336/277263
identifier_str_mv Giuppone, Cristian Andrés; Beauge, Cristian; Michtchenko, T. A.; Ferraz Mello, S.; Dynamics of two planets in co-orbital motion; Wiley Blackwell Publishing, Inc; Monthly Notices of the Royal Astronomical Society; 407; 1; 9-2010; 390-398
0035-8711
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/407/1/390/985383
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2010.16904.x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/octet-stream
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852334899994820608
score 12.952241