Quantum magnons of the intermediate phase of half-doped manganite oxides

Autores
Buitrago Piñeros, Ivon Rocio; Ventura, Cecilia Ileana; Manuel, Luis Oscar
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
At half doping, the ground state of three-dimensional manganite perovskite oxides like R1-xCaxMnO3, where R is a trivalent ion such as La, Pr, etc., is still unclear. Many experimental findings agree better with the combined magnetic, charge, and orbital order characteristic of the “intermediate phase”, introduced by Efremov in 2004 [Nat. Mater., 3, 853]. This phase consists of spin dimers (thus incorporating aspects of the Zener polaron phase (ZP) proposed in 2002 by Daoud-Aladine [Phys. Rev. Lett., 89, 097205]), though formed by a pair of parallel Mn spins of different magnitude, in principle (thereby allowing for a degree of Mn charge disproportionation: not necessarily as large as that of Mn3+-Mn4+ in Goodenough's original CE phase [Phys. Rev. 100, 564 (1955)]). In the intermediate phase, consecutive spin dimers localed along the planar zig-zag chains are oriented at a constant relative angle φ between them. Varying Mn-charge disproportionation and φ, the intermediate phase should allow to continuously interpolate between the two limiting cases of the CE phase and the dimer phase denoted as “orthogonal intermediate π/2-phase”. It is not easy to find a microscopic model able to describe the phenomenological intermediate phase adequately for the spin, charge, and orbital degrees of freedom simultaneously. Here, we study the quantum spin excitations of a planar model of interacting localized spins, which we found can stabilize the intermediate phase classically. We compare the quantum magnons of the intermediate phase with those of the CE and orthogonal π/2 phases, in the context of recent experimental results.
Fil: Buitrago Piñeros, Ivon Rocio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (centro Atómico Bariloche); Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Ventura, Cecilia Ileana. Universidad Nacional de Rio Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina
Fil: Manuel, Luis Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina
Materia
INTERMEDIATE PHASE
MAGNETIC EXCITATIONS
MANGANITES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/5907

id CONICETDig_7929f5b9255bca93a9325ced8e23185e
oai_identifier_str oai:ri.conicet.gov.ar:11336/5907
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quantum magnons of the intermediate phase of half-doped manganite oxidesBuitrago Piñeros, Ivon RocioVentura, Cecilia IleanaManuel, Luis OscarINTERMEDIATE PHASEMAGNETIC EXCITATIONSMANGANITEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1At half doping, the ground state of three-dimensional manganite perovskite oxides like R1-xCaxMnO3, where R is a trivalent ion such as La, Pr, etc., is still unclear. Many experimental findings agree better with the combined magnetic, charge, and orbital order characteristic of the “intermediate phase”, introduced by Efremov in 2004 [Nat. Mater., 3, 853]. This phase consists of spin dimers (thus incorporating aspects of the Zener polaron phase (ZP) proposed in 2002 by Daoud-Aladine [Phys. Rev. Lett., 89, 097205]), though formed by a pair of parallel Mn spins of different magnitude, in principle (thereby allowing for a degree of Mn charge disproportionation: not necessarily as large as that of Mn3+-Mn4+ in Goodenough's original CE phase [Phys. Rev. 100, 564 (1955)]). In the intermediate phase, consecutive spin dimers localed along the planar zig-zag chains are oriented at a constant relative angle φ between them. Varying Mn-charge disproportionation and φ, the intermediate phase should allow to continuously interpolate between the two limiting cases of the CE phase and the dimer phase denoted as “orthogonal intermediate π/2-phase”. It is not easy to find a microscopic model able to describe the phenomenological intermediate phase adequately for the spin, charge, and orbital degrees of freedom simultaneously. Here, we study the quantum spin excitations of a planar model of interacting localized spins, which we found can stabilize the intermediate phase classically. We compare the quantum magnons of the intermediate phase with those of the CE and orthogonal π/2 phases, in the context of recent experimental results.Fil: Buitrago Piñeros, Ivon Rocio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (centro Atómico Bariloche); Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Ventura, Cecilia Ileana. Universidad Nacional de Rio Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); ArgentinaFil: Manuel, Luis Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); ArgentinaInstitute of Electrical and Electronics Engineers2013-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5907Buitrago Piñeros, Ivon Rocio; Ventura, Cecilia Ileana; Manuel, Luis Oscar; Quantum magnons of the intermediate phase of half-doped manganite oxides; Institute of Electrical and Electronics Engineers; IEEE Transactions on Magnetics; 49; 8; 8-2013; 4691-46940018-9464enginfo:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06566112info:eu-repo/semantics/altIdentifier/doi/10.1109/TMAG.2013.2261417info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/arxiv/1310.6954v1info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1310.6954v1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:22Zoai:ri.conicet.gov.ar:11336/5907instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:22.82CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quantum magnons of the intermediate phase of half-doped manganite oxides
title Quantum magnons of the intermediate phase of half-doped manganite oxides
spellingShingle Quantum magnons of the intermediate phase of half-doped manganite oxides
Buitrago Piñeros, Ivon Rocio
INTERMEDIATE PHASE
MAGNETIC EXCITATIONS
MANGANITES
title_short Quantum magnons of the intermediate phase of half-doped manganite oxides
title_full Quantum magnons of the intermediate phase of half-doped manganite oxides
title_fullStr Quantum magnons of the intermediate phase of half-doped manganite oxides
title_full_unstemmed Quantum magnons of the intermediate phase of half-doped manganite oxides
title_sort Quantum magnons of the intermediate phase of half-doped manganite oxides
dc.creator.none.fl_str_mv Buitrago Piñeros, Ivon Rocio
Ventura, Cecilia Ileana
Manuel, Luis Oscar
author Buitrago Piñeros, Ivon Rocio
author_facet Buitrago Piñeros, Ivon Rocio
Ventura, Cecilia Ileana
Manuel, Luis Oscar
author_role author
author2 Ventura, Cecilia Ileana
Manuel, Luis Oscar
author2_role author
author
dc.subject.none.fl_str_mv INTERMEDIATE PHASE
MAGNETIC EXCITATIONS
MANGANITES
topic INTERMEDIATE PHASE
MAGNETIC EXCITATIONS
MANGANITES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv At half doping, the ground state of three-dimensional manganite perovskite oxides like R1-xCaxMnO3, where R is a trivalent ion such as La, Pr, etc., is still unclear. Many experimental findings agree better with the combined magnetic, charge, and orbital order characteristic of the “intermediate phase”, introduced by Efremov in 2004 [Nat. Mater., 3, 853]. This phase consists of spin dimers (thus incorporating aspects of the Zener polaron phase (ZP) proposed in 2002 by Daoud-Aladine [Phys. Rev. Lett., 89, 097205]), though formed by a pair of parallel Mn spins of different magnitude, in principle (thereby allowing for a degree of Mn charge disproportionation: not necessarily as large as that of Mn3+-Mn4+ in Goodenough's original CE phase [Phys. Rev. 100, 564 (1955)]). In the intermediate phase, consecutive spin dimers localed along the planar zig-zag chains are oriented at a constant relative angle φ between them. Varying Mn-charge disproportionation and φ, the intermediate phase should allow to continuously interpolate between the two limiting cases of the CE phase and the dimer phase denoted as “orthogonal intermediate π/2-phase”. It is not easy to find a microscopic model able to describe the phenomenological intermediate phase adequately for the spin, charge, and orbital degrees of freedom simultaneously. Here, we study the quantum spin excitations of a planar model of interacting localized spins, which we found can stabilize the intermediate phase classically. We compare the quantum magnons of the intermediate phase with those of the CE and orthogonal π/2 phases, in the context of recent experimental results.
Fil: Buitrago Piñeros, Ivon Rocio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (centro Atómico Bariloche); Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Ventura, Cecilia Ileana. Universidad Nacional de Rio Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina
Fil: Manuel, Luis Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina
description At half doping, the ground state of three-dimensional manganite perovskite oxides like R1-xCaxMnO3, where R is a trivalent ion such as La, Pr, etc., is still unclear. Many experimental findings agree better with the combined magnetic, charge, and orbital order characteristic of the “intermediate phase”, introduced by Efremov in 2004 [Nat. Mater., 3, 853]. This phase consists of spin dimers (thus incorporating aspects of the Zener polaron phase (ZP) proposed in 2002 by Daoud-Aladine [Phys. Rev. Lett., 89, 097205]), though formed by a pair of parallel Mn spins of different magnitude, in principle (thereby allowing for a degree of Mn charge disproportionation: not necessarily as large as that of Mn3+-Mn4+ in Goodenough's original CE phase [Phys. Rev. 100, 564 (1955)]). In the intermediate phase, consecutive spin dimers localed along the planar zig-zag chains are oriented at a constant relative angle φ between them. Varying Mn-charge disproportionation and φ, the intermediate phase should allow to continuously interpolate between the two limiting cases of the CE phase and the dimer phase denoted as “orthogonal intermediate π/2-phase”. It is not easy to find a microscopic model able to describe the phenomenological intermediate phase adequately for the spin, charge, and orbital degrees of freedom simultaneously. Here, we study the quantum spin excitations of a planar model of interacting localized spins, which we found can stabilize the intermediate phase classically. We compare the quantum magnons of the intermediate phase with those of the CE and orthogonal π/2 phases, in the context of recent experimental results.
publishDate 2013
dc.date.none.fl_str_mv 2013-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/5907
Buitrago Piñeros, Ivon Rocio; Ventura, Cecilia Ileana; Manuel, Luis Oscar; Quantum magnons of the intermediate phase of half-doped manganite oxides; Institute of Electrical and Electronics Engineers; IEEE Transactions on Magnetics; 49; 8; 8-2013; 4691-4694
0018-9464
url http://hdl.handle.net/11336/5907
identifier_str_mv Buitrago Piñeros, Ivon Rocio; Ventura, Cecilia Ileana; Manuel, Luis Oscar; Quantum magnons of the intermediate phase of half-doped manganite oxides; Institute of Electrical and Electronics Engineers; IEEE Transactions on Magnetics; 49; 8; 8-2013; 4691-4694
0018-9464
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06566112
info:eu-repo/semantics/altIdentifier/doi/10.1109/TMAG.2013.2261417
info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/arxiv/1310.6954v1
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1310.6954v1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270001027874816
score 13.13397