From particles to firms: On the kinetic theory of climbing up evolutionary landscapes

Autores
Bellomo, Nicola; Dosi, Giovanni; Knopoff, Damián Alejandro; Virgillito, Maria Enrica
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper constitutes the first attempt to bridge the evolutionary theory in economics and the theory of active particles in mathematics. It seeks to present a kinetic model for an evolutionary formalization of economic dynamics. The new derived mathematical representation intends to formalize the processes of learning and selection as the two fundamental drivers of evolutionary environments [G. Dosi, M.-C. Pereira and M.-E. Virgillito, The footprint of evolutionary processes of learning and selection upon the statistical properties of industrial dynamics, Ind. Corp. Change, 26 (2017) 187-210]. To coherently represent the aforementioned properties, the kinetic theory of active particles [N. Bellomo, A. Bellouquid, L. Gibelli and N. Outada, A Quest Towards a Mathematical Theory of Living Systems (Birkhäuser-Springer, 2017)] is here further developed, including the complex interaction of two hierarchical functional subsystems. Modeling and simulations enlighten the predictive ability of the approach. Finally, we outline the potential avenues for future research.
Fil: Bellomo, Nicola. Universidad de Granada; España. Politecnico di Torino; Italia
Fil: Dosi, Giovanni. Sant'anna Scuola Universitaria Superiore Pisa; Italia
Fil: Knopoff, Damián Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Virgillito, Maria Enrica. Sant'anna Scuola Universitaria Superiore Pisa; Italia
Materia
ACTIVE PARTICLES
EVOLUTIONARY DYNAMICS
IDIOSYNCRATIC LEARNING
KINETIC THEORY
MARKET SELECTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/143323

id CONICETDig_78b10d1b63b8bcd4736b7bddf435c81f
oai_identifier_str oai:ri.conicet.gov.ar:11336/143323
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling From particles to firms: On the kinetic theory of climbing up evolutionary landscapesBellomo, NicolaDosi, GiovanniKnopoff, Damián AlejandroVirgillito, Maria EnricaACTIVE PARTICLESEVOLUTIONARY DYNAMICSIDIOSYNCRATIC LEARNINGKINETIC THEORYMARKET SELECTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/5.2https://purl.org/becyt/ford/5This paper constitutes the first attempt to bridge the evolutionary theory in economics and the theory of active particles in mathematics. It seeks to present a kinetic model for an evolutionary formalization of economic dynamics. The new derived mathematical representation intends to formalize the processes of learning and selection as the two fundamental drivers of evolutionary environments [G. Dosi, M.-C. Pereira and M.-E. Virgillito, The footprint of evolutionary processes of learning and selection upon the statistical properties of industrial dynamics, Ind. Corp. Change, 26 (2017) 187-210]. To coherently represent the aforementioned properties, the kinetic theory of active particles [N. Bellomo, A. Bellouquid, L. Gibelli and N. Outada, A Quest Towards a Mathematical Theory of Living Systems (Birkhäuser-Springer, 2017)] is here further developed, including the complex interaction of two hierarchical functional subsystems. Modeling and simulations enlighten the predictive ability of the approach. Finally, we outline the potential avenues for future research.Fil: Bellomo, Nicola. Universidad de Granada; España. Politecnico di Torino; ItaliaFil: Dosi, Giovanni. Sant'anna Scuola Universitaria Superiore Pisa; ItaliaFil: Knopoff, Damián Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Virgillito, Maria Enrica. Sant'anna Scuola Universitaria Superiore Pisa; ItaliaWorld Scientific2020-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143323Bellomo, Nicola; Dosi, Giovanni; Knopoff, Damián Alejandro; Virgillito, Maria Enrica; From particles to firms: On the kinetic theory of climbing up evolutionary landscapes; World Scientific; Mathematical Models And Methods In Applied Sciences; 30; 7; 6-2020; 1441-14600218-20251793-6314CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S021820252050027Xinfo:eu-repo/semantics/altIdentifier/doi/10.1142/S021820252050027Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:20Zoai:ri.conicet.gov.ar:11336/143323instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:20.373CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv From particles to firms: On the kinetic theory of climbing up evolutionary landscapes
title From particles to firms: On the kinetic theory of climbing up evolutionary landscapes
spellingShingle From particles to firms: On the kinetic theory of climbing up evolutionary landscapes
Bellomo, Nicola
ACTIVE PARTICLES
EVOLUTIONARY DYNAMICS
IDIOSYNCRATIC LEARNING
KINETIC THEORY
MARKET SELECTION
title_short From particles to firms: On the kinetic theory of climbing up evolutionary landscapes
title_full From particles to firms: On the kinetic theory of climbing up evolutionary landscapes
title_fullStr From particles to firms: On the kinetic theory of climbing up evolutionary landscapes
title_full_unstemmed From particles to firms: On the kinetic theory of climbing up evolutionary landscapes
title_sort From particles to firms: On the kinetic theory of climbing up evolutionary landscapes
dc.creator.none.fl_str_mv Bellomo, Nicola
Dosi, Giovanni
Knopoff, Damián Alejandro
Virgillito, Maria Enrica
author Bellomo, Nicola
author_facet Bellomo, Nicola
Dosi, Giovanni
Knopoff, Damián Alejandro
Virgillito, Maria Enrica
author_role author
author2 Dosi, Giovanni
Knopoff, Damián Alejandro
Virgillito, Maria Enrica
author2_role author
author
author
dc.subject.none.fl_str_mv ACTIVE PARTICLES
EVOLUTIONARY DYNAMICS
IDIOSYNCRATIC LEARNING
KINETIC THEORY
MARKET SELECTION
topic ACTIVE PARTICLES
EVOLUTIONARY DYNAMICS
IDIOSYNCRATIC LEARNING
KINETIC THEORY
MARKET SELECTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/5.2
https://purl.org/becyt/ford/5
dc.description.none.fl_txt_mv This paper constitutes the first attempt to bridge the evolutionary theory in economics and the theory of active particles in mathematics. It seeks to present a kinetic model for an evolutionary formalization of economic dynamics. The new derived mathematical representation intends to formalize the processes of learning and selection as the two fundamental drivers of evolutionary environments [G. Dosi, M.-C. Pereira and M.-E. Virgillito, The footprint of evolutionary processes of learning and selection upon the statistical properties of industrial dynamics, Ind. Corp. Change, 26 (2017) 187-210]. To coherently represent the aforementioned properties, the kinetic theory of active particles [N. Bellomo, A. Bellouquid, L. Gibelli and N. Outada, A Quest Towards a Mathematical Theory of Living Systems (Birkhäuser-Springer, 2017)] is here further developed, including the complex interaction of two hierarchical functional subsystems. Modeling and simulations enlighten the predictive ability of the approach. Finally, we outline the potential avenues for future research.
Fil: Bellomo, Nicola. Universidad de Granada; España. Politecnico di Torino; Italia
Fil: Dosi, Giovanni. Sant'anna Scuola Universitaria Superiore Pisa; Italia
Fil: Knopoff, Damián Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Virgillito, Maria Enrica. Sant'anna Scuola Universitaria Superiore Pisa; Italia
description This paper constitutes the first attempt to bridge the evolutionary theory in economics and the theory of active particles in mathematics. It seeks to present a kinetic model for an evolutionary formalization of economic dynamics. The new derived mathematical representation intends to formalize the processes of learning and selection as the two fundamental drivers of evolutionary environments [G. Dosi, M.-C. Pereira and M.-E. Virgillito, The footprint of evolutionary processes of learning and selection upon the statistical properties of industrial dynamics, Ind. Corp. Change, 26 (2017) 187-210]. To coherently represent the aforementioned properties, the kinetic theory of active particles [N. Bellomo, A. Bellouquid, L. Gibelli and N. Outada, A Quest Towards a Mathematical Theory of Living Systems (Birkhäuser-Springer, 2017)] is here further developed, including the complex interaction of two hierarchical functional subsystems. Modeling and simulations enlighten the predictive ability of the approach. Finally, we outline the potential avenues for future research.
publishDate 2020
dc.date.none.fl_str_mv 2020-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/143323
Bellomo, Nicola; Dosi, Giovanni; Knopoff, Damián Alejandro; Virgillito, Maria Enrica; From particles to firms: On the kinetic theory of climbing up evolutionary landscapes; World Scientific; Mathematical Models And Methods In Applied Sciences; 30; 7; 6-2020; 1441-1460
0218-2025
1793-6314
CONICET Digital
CONICET
url http://hdl.handle.net/11336/143323
identifier_str_mv Bellomo, Nicola; Dosi, Giovanni; Knopoff, Damián Alejandro; Virgillito, Maria Enrica; From particles to firms: On the kinetic theory of climbing up evolutionary landscapes; World Scientific; Mathematical Models And Methods In Applied Sciences; 30; 7; 6-2020; 1441-1460
0218-2025
1793-6314
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S021820252050027X
info:eu-repo/semantics/altIdentifier/doi/10.1142/S021820252050027X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269398899884032
score 13.13397