Rolling of a symmetric sphere on a horizontal plane without sliding or spinning

Autores
Cendra, Hernan; Etchechoury, María del Rosario
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we perform a complete study of the dynamics of a symmetric sphere rolling on a horizontal plane without sliding or spinning. Integrals of motion that completely determine the behaviour of this systems in terms of elementary functions are explicitly written. Equilibrium points and closed orbits are systematically described. Our approach is geometric and we find that the system is equivalent to an ODE on the manifold S2 × S1.
Fil: Cendra, Hernan. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Etchechoury, María del Rosario. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Materia
INTEGRABILITY
NONHOLONOMIC
SYMMETRIC ROLLING SPHERE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/94333

id CONICETDig_775175a8a97a71b5998b867d48a7dd6b
oai_identifier_str oai:ri.conicet.gov.ar:11336/94333
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Rolling of a symmetric sphere on a horizontal plane without sliding or spinningCendra, HernanEtchechoury, María del RosarioINTEGRABILITYNONHOLONOMICSYMMETRIC ROLLING SPHEREhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we perform a complete study of the dynamics of a symmetric sphere rolling on a horizontal plane without sliding or spinning. Integrals of motion that completely determine the behaviour of this systems in terms of elementary functions are explicitly written. Equilibrium points and closed orbits are systematically described. Our approach is geometric and we find that the system is equivalent to an ODE on the manifold S2 × S1.Fil: Cendra, Hernan. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Etchechoury, María del Rosario. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaElsevier Science2006-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/94333Cendra, Hernan; Etchechoury, María del Rosario; Rolling of a symmetric sphere on a horizontal plane without sliding or spinning; Elsevier Science; Reports On Mathematical Physics; 57; 3; 6-2006; 367-3740034-4877CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0034487706800273info:eu-repo/semantics/altIdentifier/doi/10.1016/S0034-4877(06)80027-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:11:30Zoai:ri.conicet.gov.ar:11336/94333instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:11:30.614CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Rolling of a symmetric sphere on a horizontal plane without sliding or spinning
title Rolling of a symmetric sphere on a horizontal plane without sliding or spinning
spellingShingle Rolling of a symmetric sphere on a horizontal plane without sliding or spinning
Cendra, Hernan
INTEGRABILITY
NONHOLONOMIC
SYMMETRIC ROLLING SPHERE
title_short Rolling of a symmetric sphere on a horizontal plane without sliding or spinning
title_full Rolling of a symmetric sphere on a horizontal plane without sliding or spinning
title_fullStr Rolling of a symmetric sphere on a horizontal plane without sliding or spinning
title_full_unstemmed Rolling of a symmetric sphere on a horizontal plane without sliding or spinning
title_sort Rolling of a symmetric sphere on a horizontal plane without sliding or spinning
dc.creator.none.fl_str_mv Cendra, Hernan
Etchechoury, María del Rosario
author Cendra, Hernan
author_facet Cendra, Hernan
Etchechoury, María del Rosario
author_role author
author2 Etchechoury, María del Rosario
author2_role author
dc.subject.none.fl_str_mv INTEGRABILITY
NONHOLONOMIC
SYMMETRIC ROLLING SPHERE
topic INTEGRABILITY
NONHOLONOMIC
SYMMETRIC ROLLING SPHERE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we perform a complete study of the dynamics of a symmetric sphere rolling on a horizontal plane without sliding or spinning. Integrals of motion that completely determine the behaviour of this systems in terms of elementary functions are explicitly written. Equilibrium points and closed orbits are systematically described. Our approach is geometric and we find that the system is equivalent to an ODE on the manifold S2 × S1.
Fil: Cendra, Hernan. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Etchechoury, María del Rosario. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
description In this paper we perform a complete study of the dynamics of a symmetric sphere rolling on a horizontal plane without sliding or spinning. Integrals of motion that completely determine the behaviour of this systems in terms of elementary functions are explicitly written. Equilibrium points and closed orbits are systematically described. Our approach is geometric and we find that the system is equivalent to an ODE on the manifold S2 × S1.
publishDate 2006
dc.date.none.fl_str_mv 2006-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/94333
Cendra, Hernan; Etchechoury, María del Rosario; Rolling of a symmetric sphere on a horizontal plane without sliding or spinning; Elsevier Science; Reports On Mathematical Physics; 57; 3; 6-2006; 367-374
0034-4877
CONICET Digital
CONICET
url http://hdl.handle.net/11336/94333
identifier_str_mv Cendra, Hernan; Etchechoury, María del Rosario; Rolling of a symmetric sphere on a horizontal plane without sliding or spinning; Elsevier Science; Reports On Mathematical Physics; 57; 3; 6-2006; 367-374
0034-4877
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0034487706800273
info:eu-repo/semantics/altIdentifier/doi/10.1016/S0034-4877(06)80027-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980590211563520
score 12.993085