Tuning Size and Thermal Hysteresis in Bistable Spin Crossover Nanoparticles
- Autores
- Galán Mascarós, José Ramón; Coronado, Eugenio; Forment Aliaga, Alicia; Monrabal Capilla, María; Pinilla Cienfuegos, Elena; Ceolin, Marcelo Raul
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nanoparticles of iron(II) triazole salts have been prepared from water-organic microemulsions. The mean size of the nanoparticles can be tuned down to 6 nm in diameter, with a narrow size distribution. A sharp spin transition from the low spin (LS) to the high spin (HS) state is observed above room temperature, with a 30-40-K-wide thermal hysteresis. The same preparation can yield second generation nanoparticles containing molecular alloys by mixing triazole with triazole derivatives, or from metallic mixtures of iron(II) and zinc(II). In these nanoparticles of 10-15 nm, the spin transition “moves” towards lower temperatures, reaching a 316 K limit for the cooling down transition and maintaining a thermal hysteresis over 15-20-K-wide. The nanoparticles were characterized by dynamic light scattering, TEM, and AFM, after deposition on gold or silicon surfaces. The spin transition was characterized by magnetic susceptibility measurements and EXAFS (in solid samples after solvent removal) and also by the color change between the LS (violet) and HS (colorless) states in an organic solvent suspension. The discovery of bistable magnetic nanoparticles of 6 nm with a wide thermal hysteresis above room temperature showcases the actual possibilities of spin crossover materials for nanotechnological applications.(II) triazole salts have been prepared from water-organic microemulsions. The mean size of the nanoparticles can be tuned down to 6 nm in diameter, with a narrow size distribution. A sharp spin transition from the low spin (LS) to the high spin (HS) state is observed above room temperature, with a 30-40-K-wide thermal hysteresis. The same preparation can yield second generation nanoparticles containing molecular alloys by mixing triazole with triazole derivatives, or from metallic mixtures of iron(II) and zinc(II). In these nanoparticles of 10-15 nm, the spin transition “moves” towards lower temperatures, reaching a 316 K limit for the cooling down transition and maintaining a thermal hysteresis over 15-20-K-wide. The nanoparticles were characterized by dynamic light scattering, TEM, and AFM, after deposition on gold or silicon surfaces. The spin transition was characterized by magnetic susceptibility measurements and EXAFS (in solid samples after solvent removal) and also by the color change between the LS (violet) and HS (colorless) states in an organic solvent suspension. The discovery of bistable magnetic nanoparticles of 6 nm with a wide thermal hysteresis above room temperature showcases the actual possibilities of spin crossover materials for nanotechnological applications.
Fil: Galán Mascarós, José Ramón. Barcelona Institute Of Science And Technology. Institut Català D'investigació Química.; España
Fil: Coronado, Eugenio. Universidad de Valencia; España
Fil: Forment Aliaga, Alicia. Universidad de Valencia; España
Fil: Monrabal Capilla, María. Universidad de Valencia; España
Fil: Pinilla Cienfuegos, Elena. Universidad de Valencia; España
Fil: Ceolin, Marcelo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina - Materia
-
nanociencias
spin-crossover
magnetismo
luz sincrotron - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/275330
Ver los metadatos del registro completo
| id |
CONICETDig_76f81c8c50091412ccd66fd9252fd7b7 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/275330 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Tuning Size and Thermal Hysteresis in Bistable Spin Crossover NanoparticlesGalán Mascarós, José RamónCoronado, EugenioForment Aliaga, AliciaMonrabal Capilla, MaríaPinilla Cienfuegos, ElenaCeolin, Marcelo Raulnanocienciasspin-crossovermagnetismoluz sincrotronhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Nanoparticles of iron(II) triazole salts have been prepared from water-organic microemulsions. The mean size of the nanoparticles can be tuned down to 6 nm in diameter, with a narrow size distribution. A sharp spin transition from the low spin (LS) to the high spin (HS) state is observed above room temperature, with a 30-40-K-wide thermal hysteresis. The same preparation can yield second generation nanoparticles containing molecular alloys by mixing triazole with triazole derivatives, or from metallic mixtures of iron(II) and zinc(II). In these nanoparticles of 10-15 nm, the spin transition “moves” towards lower temperatures, reaching a 316 K limit for the cooling down transition and maintaining a thermal hysteresis over 15-20-K-wide. The nanoparticles were characterized by dynamic light scattering, TEM, and AFM, after deposition on gold or silicon surfaces. The spin transition was characterized by magnetic susceptibility measurements and EXAFS (in solid samples after solvent removal) and also by the color change between the LS (violet) and HS (colorless) states in an organic solvent suspension. The discovery of bistable magnetic nanoparticles of 6 nm with a wide thermal hysteresis above room temperature showcases the actual possibilities of spin crossover materials for nanotechnological applications.(II) triazole salts have been prepared from water-organic microemulsions. The mean size of the nanoparticles can be tuned down to 6 nm in diameter, with a narrow size distribution. A sharp spin transition from the low spin (LS) to the high spin (HS) state is observed above room temperature, with a 30-40-K-wide thermal hysteresis. The same preparation can yield second generation nanoparticles containing molecular alloys by mixing triazole with triazole derivatives, or from metallic mixtures of iron(II) and zinc(II). In these nanoparticles of 10-15 nm, the spin transition “moves” towards lower temperatures, reaching a 316 K limit for the cooling down transition and maintaining a thermal hysteresis over 15-20-K-wide. The nanoparticles were characterized by dynamic light scattering, TEM, and AFM, after deposition on gold or silicon surfaces. The spin transition was characterized by magnetic susceptibility measurements and EXAFS (in solid samples after solvent removal) and also by the color change between the LS (violet) and HS (colorless) states in an organic solvent suspension. The discovery of bistable magnetic nanoparticles of 6 nm with a wide thermal hysteresis above room temperature showcases the actual possibilities of spin crossover materials for nanotechnological applications.Fil: Galán Mascarós, José Ramón. Barcelona Institute Of Science And Technology. Institut Català D'investigació Química.; EspañaFil: Coronado, Eugenio. Universidad de Valencia; EspañaFil: Forment Aliaga, Alicia. Universidad de Valencia; EspañaFil: Monrabal Capilla, María. Universidad de Valencia; EspañaFil: Pinilla Cienfuegos, Elena. Universidad de Valencia; EspañaFil: Ceolin, Marcelo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaAmerican Chemical Society2010-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/275330Galán Mascarós, José Ramón; Coronado, Eugenio; Forment Aliaga, Alicia; Monrabal Capilla, María; Pinilla Cienfuegos, Elena; et al.; Tuning Size and Thermal Hysteresis in Bistable Spin Crossover Nanoparticles; American Chemical Society; Inorganic Chemistry; 49; 12; 5-2010; 5706-57140020-1669CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/ic100751ainfo:eu-repo/semantics/altIdentifier/doi/10.1021/ic100751ainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:04:54Zoai:ri.conicet.gov.ar:11336/275330instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:04:54.495CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Tuning Size and Thermal Hysteresis in Bistable Spin Crossover Nanoparticles |
| title |
Tuning Size and Thermal Hysteresis in Bistable Spin Crossover Nanoparticles |
| spellingShingle |
Tuning Size and Thermal Hysteresis in Bistable Spin Crossover Nanoparticles Galán Mascarós, José Ramón nanociencias spin-crossover magnetismo luz sincrotron |
| title_short |
Tuning Size and Thermal Hysteresis in Bistable Spin Crossover Nanoparticles |
| title_full |
Tuning Size and Thermal Hysteresis in Bistable Spin Crossover Nanoparticles |
| title_fullStr |
Tuning Size and Thermal Hysteresis in Bistable Spin Crossover Nanoparticles |
| title_full_unstemmed |
Tuning Size and Thermal Hysteresis in Bistable Spin Crossover Nanoparticles |
| title_sort |
Tuning Size and Thermal Hysteresis in Bistable Spin Crossover Nanoparticles |
| dc.creator.none.fl_str_mv |
Galán Mascarós, José Ramón Coronado, Eugenio Forment Aliaga, Alicia Monrabal Capilla, María Pinilla Cienfuegos, Elena Ceolin, Marcelo Raul |
| author |
Galán Mascarós, José Ramón |
| author_facet |
Galán Mascarós, José Ramón Coronado, Eugenio Forment Aliaga, Alicia Monrabal Capilla, María Pinilla Cienfuegos, Elena Ceolin, Marcelo Raul |
| author_role |
author |
| author2 |
Coronado, Eugenio Forment Aliaga, Alicia Monrabal Capilla, María Pinilla Cienfuegos, Elena Ceolin, Marcelo Raul |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
nanociencias spin-crossover magnetismo luz sincrotron |
| topic |
nanociencias spin-crossover magnetismo luz sincrotron |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Nanoparticles of iron(II) triazole salts have been prepared from water-organic microemulsions. The mean size of the nanoparticles can be tuned down to 6 nm in diameter, with a narrow size distribution. A sharp spin transition from the low spin (LS) to the high spin (HS) state is observed above room temperature, with a 30-40-K-wide thermal hysteresis. The same preparation can yield second generation nanoparticles containing molecular alloys by mixing triazole with triazole derivatives, or from metallic mixtures of iron(II) and zinc(II). In these nanoparticles of 10-15 nm, the spin transition “moves” towards lower temperatures, reaching a 316 K limit for the cooling down transition and maintaining a thermal hysteresis over 15-20-K-wide. The nanoparticles were characterized by dynamic light scattering, TEM, and AFM, after deposition on gold or silicon surfaces. The spin transition was characterized by magnetic susceptibility measurements and EXAFS (in solid samples after solvent removal) and also by the color change between the LS (violet) and HS (colorless) states in an organic solvent suspension. The discovery of bistable magnetic nanoparticles of 6 nm with a wide thermal hysteresis above room temperature showcases the actual possibilities of spin crossover materials for nanotechnological applications.(II) triazole salts have been prepared from water-organic microemulsions. The mean size of the nanoparticles can be tuned down to 6 nm in diameter, with a narrow size distribution. A sharp spin transition from the low spin (LS) to the high spin (HS) state is observed above room temperature, with a 30-40-K-wide thermal hysteresis. The same preparation can yield second generation nanoparticles containing molecular alloys by mixing triazole with triazole derivatives, or from metallic mixtures of iron(II) and zinc(II). In these nanoparticles of 10-15 nm, the spin transition “moves” towards lower temperatures, reaching a 316 K limit for the cooling down transition and maintaining a thermal hysteresis over 15-20-K-wide. The nanoparticles were characterized by dynamic light scattering, TEM, and AFM, after deposition on gold or silicon surfaces. The spin transition was characterized by magnetic susceptibility measurements and EXAFS (in solid samples after solvent removal) and also by the color change between the LS (violet) and HS (colorless) states in an organic solvent suspension. The discovery of bistable magnetic nanoparticles of 6 nm with a wide thermal hysteresis above room temperature showcases the actual possibilities of spin crossover materials for nanotechnological applications. Fil: Galán Mascarós, José Ramón. Barcelona Institute Of Science And Technology. Institut Català D'investigació Química.; España Fil: Coronado, Eugenio. Universidad de Valencia; España Fil: Forment Aliaga, Alicia. Universidad de Valencia; España Fil: Monrabal Capilla, María. Universidad de Valencia; España Fil: Pinilla Cienfuegos, Elena. Universidad de Valencia; España Fil: Ceolin, Marcelo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina |
| description |
Nanoparticles of iron(II) triazole salts have been prepared from water-organic microemulsions. The mean size of the nanoparticles can be tuned down to 6 nm in diameter, with a narrow size distribution. A sharp spin transition from the low spin (LS) to the high spin (HS) state is observed above room temperature, with a 30-40-K-wide thermal hysteresis. The same preparation can yield second generation nanoparticles containing molecular alloys by mixing triazole with triazole derivatives, or from metallic mixtures of iron(II) and zinc(II). In these nanoparticles of 10-15 nm, the spin transition “moves” towards lower temperatures, reaching a 316 K limit for the cooling down transition and maintaining a thermal hysteresis over 15-20-K-wide. The nanoparticles were characterized by dynamic light scattering, TEM, and AFM, after deposition on gold or silicon surfaces. The spin transition was characterized by magnetic susceptibility measurements and EXAFS (in solid samples after solvent removal) and also by the color change between the LS (violet) and HS (colorless) states in an organic solvent suspension. The discovery of bistable magnetic nanoparticles of 6 nm with a wide thermal hysteresis above room temperature showcases the actual possibilities of spin crossover materials for nanotechnological applications.(II) triazole salts have been prepared from water-organic microemulsions. The mean size of the nanoparticles can be tuned down to 6 nm in diameter, with a narrow size distribution. A sharp spin transition from the low spin (LS) to the high spin (HS) state is observed above room temperature, with a 30-40-K-wide thermal hysteresis. The same preparation can yield second generation nanoparticles containing molecular alloys by mixing triazole with triazole derivatives, or from metallic mixtures of iron(II) and zinc(II). In these nanoparticles of 10-15 nm, the spin transition “moves” towards lower temperatures, reaching a 316 K limit for the cooling down transition and maintaining a thermal hysteresis over 15-20-K-wide. The nanoparticles were characterized by dynamic light scattering, TEM, and AFM, after deposition on gold or silicon surfaces. The spin transition was characterized by magnetic susceptibility measurements and EXAFS (in solid samples after solvent removal) and also by the color change between the LS (violet) and HS (colorless) states in an organic solvent suspension. The discovery of bistable magnetic nanoparticles of 6 nm with a wide thermal hysteresis above room temperature showcases the actual possibilities of spin crossover materials for nanotechnological applications. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/275330 Galán Mascarós, José Ramón; Coronado, Eugenio; Forment Aliaga, Alicia; Monrabal Capilla, María; Pinilla Cienfuegos, Elena; et al.; Tuning Size and Thermal Hysteresis in Bistable Spin Crossover Nanoparticles; American Chemical Society; Inorganic Chemistry; 49; 12; 5-2010; 5706-5714 0020-1669 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/275330 |
| identifier_str_mv |
Galán Mascarós, José Ramón; Coronado, Eugenio; Forment Aliaga, Alicia; Monrabal Capilla, María; Pinilla Cienfuegos, Elena; et al.; Tuning Size and Thermal Hysteresis in Bistable Spin Crossover Nanoparticles; American Chemical Society; Inorganic Chemistry; 49; 12; 5-2010; 5706-5714 0020-1669 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/ic100751a info:eu-repo/semantics/altIdentifier/doi/10.1021/ic100751a |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Chemical Society |
| publisher.none.fl_str_mv |
American Chemical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335518905270272 |
| score |
12.952241 |