Unified framework to determine Gaussian states in continuous-variable systems

Autores
Nicacio, Fernando; Valdés Hernández, Andrea; Majtey, Ana Paula; Toscano, Fabricio
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Gaussian states are the backbone of quantum information protocols with continuous-variable systems whose power relies fundamentally on the entanglement between the different modes. In the case of global pure states, knowledge of the reduced states in a given bipartition of a multipartite quantum system bears information on the entanglement in such bipartition. For Gaussian states, the reduced states are also Gaussian, so their determination requires essentially the experimental determination of their covariance matrix. Here we develop strategies to determine the covariance matrix of an arbitrary n-mode bosonic Gaussian state through measurement of the total phase acquired when appropriate metaplectic evolutions, associated with quadratic Hamiltonians, are applied. Simply one-mode metaplectic evolutions, such rotations, squeezing, and shear transformations, in addition to a single two-mode rotation, allows us to determine all the covariance matrix elements of an n-mode bosonic system. All the single-mode metaplectic evolutions are applied conditionally to a state in which an ancilla qubit is entangled with the n-mode system. The ancillary system provides, after measurement, the value of the total phase of each evolution. The proposed method is experimentally suited to implement in the most currently used continuous-variable systems.
Fil: Nicacio, Fernando. Universidade Federal do Rio de Janeiro; Brasil
Fil: Valdés Hernández, Andrea. Universidad Nacional Autónoma de México; México
Fil: Majtey, Ana Paula. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Toscano, Fabricio. Universidade Federal do Rio de Janeiro; Brasil
Materia
Bosonic Gaussian States
Entanglement
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/72319

id CONICETDig_767390a38754ed08efeb0a0cad89a333
oai_identifier_str oai:ri.conicet.gov.ar:11336/72319
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Unified framework to determine Gaussian states in continuous-variable systemsNicacio, FernandoValdés Hernández, AndreaMajtey, Ana PaulaToscano, FabricioBosonic Gaussian StatesEntanglementhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Gaussian states are the backbone of quantum information protocols with continuous-variable systems whose power relies fundamentally on the entanglement between the different modes. In the case of global pure states, knowledge of the reduced states in a given bipartition of a multipartite quantum system bears information on the entanglement in such bipartition. For Gaussian states, the reduced states are also Gaussian, so their determination requires essentially the experimental determination of their covariance matrix. Here we develop strategies to determine the covariance matrix of an arbitrary n-mode bosonic Gaussian state through measurement of the total phase acquired when appropriate metaplectic evolutions, associated with quadratic Hamiltonians, are applied. Simply one-mode metaplectic evolutions, such rotations, squeezing, and shear transformations, in addition to a single two-mode rotation, allows us to determine all the covariance matrix elements of an n-mode bosonic system. All the single-mode metaplectic evolutions are applied conditionally to a state in which an ancilla qubit is entangled with the n-mode system. The ancillary system provides, after measurement, the value of the total phase of each evolution. The proposed method is experimentally suited to implement in the most currently used continuous-variable systems.Fil: Nicacio, Fernando. Universidade Federal do Rio de Janeiro; BrasilFil: Valdés Hernández, Andrea. Universidad Nacional Autónoma de México; MéxicoFil: Majtey, Ana Paula. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Toscano, Fabricio. Universidade Federal do Rio de Janeiro; BrasilAmerican Physical Society2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72319Nicacio, Fernando; Valdés Hernández, Andrea; Majtey, Ana Paula; Toscano, Fabricio; Unified framework to determine Gaussian states in continuous-variable systems; American Physical Society; Physical Review A; 96; 4; 10-2017; 1-15; 0423412469-9926CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.96.042341info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.042341info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:14Zoai:ri.conicet.gov.ar:11336/72319instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:14.319CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Unified framework to determine Gaussian states in continuous-variable systems
title Unified framework to determine Gaussian states in continuous-variable systems
spellingShingle Unified framework to determine Gaussian states in continuous-variable systems
Nicacio, Fernando
Bosonic Gaussian States
Entanglement
title_short Unified framework to determine Gaussian states in continuous-variable systems
title_full Unified framework to determine Gaussian states in continuous-variable systems
title_fullStr Unified framework to determine Gaussian states in continuous-variable systems
title_full_unstemmed Unified framework to determine Gaussian states in continuous-variable systems
title_sort Unified framework to determine Gaussian states in continuous-variable systems
dc.creator.none.fl_str_mv Nicacio, Fernando
Valdés Hernández, Andrea
Majtey, Ana Paula
Toscano, Fabricio
author Nicacio, Fernando
author_facet Nicacio, Fernando
Valdés Hernández, Andrea
Majtey, Ana Paula
Toscano, Fabricio
author_role author
author2 Valdés Hernández, Andrea
Majtey, Ana Paula
Toscano, Fabricio
author2_role author
author
author
dc.subject.none.fl_str_mv Bosonic Gaussian States
Entanglement
topic Bosonic Gaussian States
Entanglement
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Gaussian states are the backbone of quantum information protocols with continuous-variable systems whose power relies fundamentally on the entanglement between the different modes. In the case of global pure states, knowledge of the reduced states in a given bipartition of a multipartite quantum system bears information on the entanglement in such bipartition. For Gaussian states, the reduced states are also Gaussian, so their determination requires essentially the experimental determination of their covariance matrix. Here we develop strategies to determine the covariance matrix of an arbitrary n-mode bosonic Gaussian state through measurement of the total phase acquired when appropriate metaplectic evolutions, associated with quadratic Hamiltonians, are applied. Simply one-mode metaplectic evolutions, such rotations, squeezing, and shear transformations, in addition to a single two-mode rotation, allows us to determine all the covariance matrix elements of an n-mode bosonic system. All the single-mode metaplectic evolutions are applied conditionally to a state in which an ancilla qubit is entangled with the n-mode system. The ancillary system provides, after measurement, the value of the total phase of each evolution. The proposed method is experimentally suited to implement in the most currently used continuous-variable systems.
Fil: Nicacio, Fernando. Universidade Federal do Rio de Janeiro; Brasil
Fil: Valdés Hernández, Andrea. Universidad Nacional Autónoma de México; México
Fil: Majtey, Ana Paula. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Toscano, Fabricio. Universidade Federal do Rio de Janeiro; Brasil
description Gaussian states are the backbone of quantum information protocols with continuous-variable systems whose power relies fundamentally on the entanglement between the different modes. In the case of global pure states, knowledge of the reduced states in a given bipartition of a multipartite quantum system bears information on the entanglement in such bipartition. For Gaussian states, the reduced states are also Gaussian, so their determination requires essentially the experimental determination of their covariance matrix. Here we develop strategies to determine the covariance matrix of an arbitrary n-mode bosonic Gaussian state through measurement of the total phase acquired when appropriate metaplectic evolutions, associated with quadratic Hamiltonians, are applied. Simply one-mode metaplectic evolutions, such rotations, squeezing, and shear transformations, in addition to a single two-mode rotation, allows us to determine all the covariance matrix elements of an n-mode bosonic system. All the single-mode metaplectic evolutions are applied conditionally to a state in which an ancilla qubit is entangled with the n-mode system. The ancillary system provides, after measurement, the value of the total phase of each evolution. The proposed method is experimentally suited to implement in the most currently used continuous-variable systems.
publishDate 2017
dc.date.none.fl_str_mv 2017-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/72319
Nicacio, Fernando; Valdés Hernández, Andrea; Majtey, Ana Paula; Toscano, Fabricio; Unified framework to determine Gaussian states in continuous-variable systems; American Physical Society; Physical Review A; 96; 4; 10-2017; 1-15; 042341
2469-9926
CONICET Digital
CONICET
url http://hdl.handle.net/11336/72319
identifier_str_mv Nicacio, Fernando; Valdés Hernández, Andrea; Majtey, Ana Paula; Toscano, Fabricio; Unified framework to determine Gaussian states in continuous-variable systems; American Physical Society; Physical Review A; 96; 4; 10-2017; 1-15; 042341
2469-9926
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevA.96.042341
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.042341
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269273333956608
score 13.13397