Machine learning techniques to construct detailed phase diagrams for skyrmion systems
- Autores
- Gómez Albarracín, Flavia Alejandra; Rosales, Héctor Diego
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recently, there has been an increased interest in the application of machine learning (ML) techniques to a variety of problems in condensed-matter physics. In this regard, of particular significance is the characterization of simple and complex phases of matter. Here, we use a ML approach to construct the full phase diagram of a well-known spin model combining ferromagnetic exchange and Dzyaloshinskii-Moriya (DM) interactions where topological phases emerge. At low temperatures, the system is tuned from a spiral phase to a skyrmion crystal by a magnetic field. However, thermal fluctuations induce two types of intermediate phases, bimerons and skyrmion gas, which are not as easily determined as spirals or skyrmion crystals. We resort to large-scale Monte Carlo simulations to obtain low-temperature spin configurations and train a convolutional neural network (CNN), taking only snapshots at specific values of the DM couplings, to classify between the different phases, focusing on the intermediate and intricate topological textures. We then apply the CNN to higher-temperature configurations and to other DM values to construct a detailed magnetic-field-temperature phase diagram, achieving outstanding results. We discuss the importance of including the disordered paramagnetic phases in order to get the phase boundaries, and, finally, we compare our approach with other ML algorithms.
Fil: Gómez Albarracín, Flavia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Rosales, Héctor Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina - Materia
-
SKYRMIONS
MACHINE LEARNING
TOPOLOGY
MONTE CARLO - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/212735
Ver los metadatos del registro completo
id |
CONICETDig_76395e6ad19e5f9b215c95cf254c39f5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/212735 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Machine learning techniques to construct detailed phase diagrams for skyrmion systemsGómez Albarracín, Flavia AlejandraRosales, Héctor DiegoSKYRMIONSMACHINE LEARNINGTOPOLOGYMONTE CARLOhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Recently, there has been an increased interest in the application of machine learning (ML) techniques to a variety of problems in condensed-matter physics. In this regard, of particular significance is the characterization of simple and complex phases of matter. Here, we use a ML approach to construct the full phase diagram of a well-known spin model combining ferromagnetic exchange and Dzyaloshinskii-Moriya (DM) interactions where topological phases emerge. At low temperatures, the system is tuned from a spiral phase to a skyrmion crystal by a magnetic field. However, thermal fluctuations induce two types of intermediate phases, bimerons and skyrmion gas, which are not as easily determined as spirals or skyrmion crystals. We resort to large-scale Monte Carlo simulations to obtain low-temperature spin configurations and train a convolutional neural network (CNN), taking only snapshots at specific values of the DM couplings, to classify between the different phases, focusing on the intermediate and intricate topological textures. We then apply the CNN to higher-temperature configurations and to other DM values to construct a detailed magnetic-field-temperature phase diagram, achieving outstanding results. We discuss the importance of including the disordered paramagnetic phases in order to get the phase boundaries, and, finally, we compare our approach with other ML algorithms.Fil: Gómez Albarracín, Flavia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; ArgentinaFil: Rosales, Héctor Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; ArgentinaAmerican Physical Society2022-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/212735Gómez Albarracín, Flavia Alejandra; Rosales, Héctor Diego; Machine learning techniques to construct detailed phase diagrams for skyrmion systems; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 105; 21; 5-2022; 1-101098-01212469-9969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.105.214423info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:41Zoai:ri.conicet.gov.ar:11336/212735instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:41.873CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Machine learning techniques to construct detailed phase diagrams for skyrmion systems |
title |
Machine learning techniques to construct detailed phase diagrams for skyrmion systems |
spellingShingle |
Machine learning techniques to construct detailed phase diagrams for skyrmion systems Gómez Albarracín, Flavia Alejandra SKYRMIONS MACHINE LEARNING TOPOLOGY MONTE CARLO |
title_short |
Machine learning techniques to construct detailed phase diagrams for skyrmion systems |
title_full |
Machine learning techniques to construct detailed phase diagrams for skyrmion systems |
title_fullStr |
Machine learning techniques to construct detailed phase diagrams for skyrmion systems |
title_full_unstemmed |
Machine learning techniques to construct detailed phase diagrams for skyrmion systems |
title_sort |
Machine learning techniques to construct detailed phase diagrams for skyrmion systems |
dc.creator.none.fl_str_mv |
Gómez Albarracín, Flavia Alejandra Rosales, Héctor Diego |
author |
Gómez Albarracín, Flavia Alejandra |
author_facet |
Gómez Albarracín, Flavia Alejandra Rosales, Héctor Diego |
author_role |
author |
author2 |
Rosales, Héctor Diego |
author2_role |
author |
dc.subject.none.fl_str_mv |
SKYRMIONS MACHINE LEARNING TOPOLOGY MONTE CARLO |
topic |
SKYRMIONS MACHINE LEARNING TOPOLOGY MONTE CARLO |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Recently, there has been an increased interest in the application of machine learning (ML) techniques to a variety of problems in condensed-matter physics. In this regard, of particular significance is the characterization of simple and complex phases of matter. Here, we use a ML approach to construct the full phase diagram of a well-known spin model combining ferromagnetic exchange and Dzyaloshinskii-Moriya (DM) interactions where topological phases emerge. At low temperatures, the system is tuned from a spiral phase to a skyrmion crystal by a magnetic field. However, thermal fluctuations induce two types of intermediate phases, bimerons and skyrmion gas, which are not as easily determined as spirals or skyrmion crystals. We resort to large-scale Monte Carlo simulations to obtain low-temperature spin configurations and train a convolutional neural network (CNN), taking only snapshots at specific values of the DM couplings, to classify between the different phases, focusing on the intermediate and intricate topological textures. We then apply the CNN to higher-temperature configurations and to other DM values to construct a detailed magnetic-field-temperature phase diagram, achieving outstanding results. We discuss the importance of including the disordered paramagnetic phases in order to get the phase boundaries, and, finally, we compare our approach with other ML algorithms. Fil: Gómez Albarracín, Flavia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina Fil: Rosales, Héctor Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina |
description |
Recently, there has been an increased interest in the application of machine learning (ML) techniques to a variety of problems in condensed-matter physics. In this regard, of particular significance is the characterization of simple and complex phases of matter. Here, we use a ML approach to construct the full phase diagram of a well-known spin model combining ferromagnetic exchange and Dzyaloshinskii-Moriya (DM) interactions where topological phases emerge. At low temperatures, the system is tuned from a spiral phase to a skyrmion crystal by a magnetic field. However, thermal fluctuations induce two types of intermediate phases, bimerons and skyrmion gas, which are not as easily determined as spirals or skyrmion crystals. We resort to large-scale Monte Carlo simulations to obtain low-temperature spin configurations and train a convolutional neural network (CNN), taking only snapshots at specific values of the DM couplings, to classify between the different phases, focusing on the intermediate and intricate topological textures. We then apply the CNN to higher-temperature configurations and to other DM values to construct a detailed magnetic-field-temperature phase diagram, achieving outstanding results. We discuss the importance of including the disordered paramagnetic phases in order to get the phase boundaries, and, finally, we compare our approach with other ML algorithms. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/212735 Gómez Albarracín, Flavia Alejandra; Rosales, Héctor Diego; Machine learning techniques to construct detailed phase diagrams for skyrmion systems; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 105; 21; 5-2022; 1-10 1098-0121 2469-9969 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/212735 |
identifier_str_mv |
Gómez Albarracín, Flavia Alejandra; Rosales, Héctor Diego; Machine learning techniques to construct detailed phase diagrams for skyrmion systems; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 105; 21; 5-2022; 1-10 1098-0121 2469-9969 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.105.214423 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613189079138304 |
score |
13.070432 |