Machine learning techniques to construct detailed phase diagrams for skyrmion systems

Autores
Gómez Albarracín, Flavia Alejandra; Rosales, Héctor Diego
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Recently, there has been an increased interest in the application of machine learning (ML) techniques to a variety of problems in condensed-matter physics. In this regard, of particular significance is the characterization of simple and complex phases of matter. Here, we use a ML approach to construct the full phase diagram of a well-known spin model combining ferromagnetic exchange and Dzyaloshinskii-Moriya (DM) interactions where topological phases emerge. At low temperatures, the system is tuned from a spiral phase to a skyrmion crystal by a magnetic field. However, thermal fluctuations induce two types of intermediate phases, bimerons and skyrmion gas, which are not as easily determined as spirals or skyrmion crystals. We resort to large-scale Monte Carlo simulations to obtain low-temperature spin configurations and train a convolutional neural network (CNN), taking only snapshots at specific values of the DM couplings, to classify between the different phases, focusing on the intermediate and intricate topological textures. We then apply the CNN to higher-temperature configurations and to other DM values to construct a detailed magnetic-field-temperature phase diagram, achieving outstanding results. We discuss the importance of including the disordered paramagnetic phases in order to get the phase boundaries, and, finally, we compare our approach with other ML algorithms.
Fil: Gómez Albarracín, Flavia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Rosales, Héctor Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Materia
SKYRMIONS
MACHINE LEARNING
TOPOLOGY
MONTE CARLO
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/212735

id CONICETDig_76395e6ad19e5f9b215c95cf254c39f5
oai_identifier_str oai:ri.conicet.gov.ar:11336/212735
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Machine learning techniques to construct detailed phase diagrams for skyrmion systemsGómez Albarracín, Flavia AlejandraRosales, Héctor DiegoSKYRMIONSMACHINE LEARNINGTOPOLOGYMONTE CARLOhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Recently, there has been an increased interest in the application of machine learning (ML) techniques to a variety of problems in condensed-matter physics. In this regard, of particular significance is the characterization of simple and complex phases of matter. Here, we use a ML approach to construct the full phase diagram of a well-known spin model combining ferromagnetic exchange and Dzyaloshinskii-Moriya (DM) interactions where topological phases emerge. At low temperatures, the system is tuned from a spiral phase to a skyrmion crystal by a magnetic field. However, thermal fluctuations induce two types of intermediate phases, bimerons and skyrmion gas, which are not as easily determined as spirals or skyrmion crystals. We resort to large-scale Monte Carlo simulations to obtain low-temperature spin configurations and train a convolutional neural network (CNN), taking only snapshots at specific values of the DM couplings, to classify between the different phases, focusing on the intermediate and intricate topological textures. We then apply the CNN to higher-temperature configurations and to other DM values to construct a detailed magnetic-field-temperature phase diagram, achieving outstanding results. We discuss the importance of including the disordered paramagnetic phases in order to get the phase boundaries, and, finally, we compare our approach with other ML algorithms.Fil: Gómez Albarracín, Flavia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; ArgentinaFil: Rosales, Héctor Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; ArgentinaAmerican Physical Society2022-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/212735Gómez Albarracín, Flavia Alejandra; Rosales, Héctor Diego; Machine learning techniques to construct detailed phase diagrams for skyrmion systems; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 105; 21; 5-2022; 1-101098-01212469-9969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.105.214423info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:41Zoai:ri.conicet.gov.ar:11336/212735instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:41.873CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Machine learning techniques to construct detailed phase diagrams for skyrmion systems
title Machine learning techniques to construct detailed phase diagrams for skyrmion systems
spellingShingle Machine learning techniques to construct detailed phase diagrams for skyrmion systems
Gómez Albarracín, Flavia Alejandra
SKYRMIONS
MACHINE LEARNING
TOPOLOGY
MONTE CARLO
title_short Machine learning techniques to construct detailed phase diagrams for skyrmion systems
title_full Machine learning techniques to construct detailed phase diagrams for skyrmion systems
title_fullStr Machine learning techniques to construct detailed phase diagrams for skyrmion systems
title_full_unstemmed Machine learning techniques to construct detailed phase diagrams for skyrmion systems
title_sort Machine learning techniques to construct detailed phase diagrams for skyrmion systems
dc.creator.none.fl_str_mv Gómez Albarracín, Flavia Alejandra
Rosales, Héctor Diego
author Gómez Albarracín, Flavia Alejandra
author_facet Gómez Albarracín, Flavia Alejandra
Rosales, Héctor Diego
author_role author
author2 Rosales, Héctor Diego
author2_role author
dc.subject.none.fl_str_mv SKYRMIONS
MACHINE LEARNING
TOPOLOGY
MONTE CARLO
topic SKYRMIONS
MACHINE LEARNING
TOPOLOGY
MONTE CARLO
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Recently, there has been an increased interest in the application of machine learning (ML) techniques to a variety of problems in condensed-matter physics. In this regard, of particular significance is the characterization of simple and complex phases of matter. Here, we use a ML approach to construct the full phase diagram of a well-known spin model combining ferromagnetic exchange and Dzyaloshinskii-Moriya (DM) interactions where topological phases emerge. At low temperatures, the system is tuned from a spiral phase to a skyrmion crystal by a magnetic field. However, thermal fluctuations induce two types of intermediate phases, bimerons and skyrmion gas, which are not as easily determined as spirals or skyrmion crystals. We resort to large-scale Monte Carlo simulations to obtain low-temperature spin configurations and train a convolutional neural network (CNN), taking only snapshots at specific values of the DM couplings, to classify between the different phases, focusing on the intermediate and intricate topological textures. We then apply the CNN to higher-temperature configurations and to other DM values to construct a detailed magnetic-field-temperature phase diagram, achieving outstanding results. We discuss the importance of including the disordered paramagnetic phases in order to get the phase boundaries, and, finally, we compare our approach with other ML algorithms.
Fil: Gómez Albarracín, Flavia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Rosales, Héctor Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
description Recently, there has been an increased interest in the application of machine learning (ML) techniques to a variety of problems in condensed-matter physics. In this regard, of particular significance is the characterization of simple and complex phases of matter. Here, we use a ML approach to construct the full phase diagram of a well-known spin model combining ferromagnetic exchange and Dzyaloshinskii-Moriya (DM) interactions where topological phases emerge. At low temperatures, the system is tuned from a spiral phase to a skyrmion crystal by a magnetic field. However, thermal fluctuations induce two types of intermediate phases, bimerons and skyrmion gas, which are not as easily determined as spirals or skyrmion crystals. We resort to large-scale Monte Carlo simulations to obtain low-temperature spin configurations and train a convolutional neural network (CNN), taking only snapshots at specific values of the DM couplings, to classify between the different phases, focusing on the intermediate and intricate topological textures. We then apply the CNN to higher-temperature configurations and to other DM values to construct a detailed magnetic-field-temperature phase diagram, achieving outstanding results. We discuss the importance of including the disordered paramagnetic phases in order to get the phase boundaries, and, finally, we compare our approach with other ML algorithms.
publishDate 2022
dc.date.none.fl_str_mv 2022-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/212735
Gómez Albarracín, Flavia Alejandra; Rosales, Héctor Diego; Machine learning techniques to construct detailed phase diagrams for skyrmion systems; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 105; 21; 5-2022; 1-10
1098-0121
2469-9969
CONICET Digital
CONICET
url http://hdl.handle.net/11336/212735
identifier_str_mv Gómez Albarracín, Flavia Alejandra; Rosales, Héctor Diego; Machine learning techniques to construct detailed phase diagrams for skyrmion systems; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 105; 21; 5-2022; 1-10
1098-0121
2469-9969
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.105.214423
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613189079138304
score 13.070432