Self-Optimizing Control Structures with Minimum Number of Process-Dependent Controlled Variables
- Autores
- Marchetti, Alejandro Gabriel; Zumoffen, David Alejandro Ramon
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In order to operate continuous processes near the economically optimal steady-state operating point, selfoptimizing control schemes reformulate the optimization problem as a process control problem. The objective is to find controlled variables and constant set points such that the controller leads to optimal adjustments of the inputs in the presence of stable disturbances. In particular, the null space approach consists in selecting the self-optimizing controlled variables as linear combinations of the inactive output variables, based on the first-order variation of the necessary conditions of optimality. In the self-optimizing control structures proposed in the literature, the number of controlled variables required is typically equal to the number of degrees of freedom (inputs) that are available after all the equality and active inequality constrained variables are controlled. In this paper, we propose new self-optimizing control structures based on the null space approach, where depending on the number of disturbances, the number of active constraints, and the number of inputs, it is possible to decrease the number of process-dependent controlled variables by fixing linear combinations of the inputs. The effectiveness of the proposed selfoptimizing control structures with minimum number of process-dependent controlled variables is demonstrated in simulation by means of a continuous stirred tank reactor and an evaporator
Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Zumoffen, David Alejandro Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina - Materia
-
Self-Optimizing Control
Null-Space Method
Minimum Number of Control Loops - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/29714
Ver los metadatos del registro completo
| id |
CONICETDig_75d7ddcd5b27cf02f860ea9c016049a6 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/29714 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Self-Optimizing Control Structures with Minimum Number of Process-Dependent Controlled VariablesMarchetti, Alejandro GabrielZumoffen, David Alejandro RamonSelf-Optimizing ControlNull-Space MethodMinimum Number of Control Loopshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In order to operate continuous processes near the economically optimal steady-state operating point, selfoptimizing control schemes reformulate the optimization problem as a process control problem. The objective is to find controlled variables and constant set points such that the controller leads to optimal adjustments of the inputs in the presence of stable disturbances. In particular, the null space approach consists in selecting the self-optimizing controlled variables as linear combinations of the inactive output variables, based on the first-order variation of the necessary conditions of optimality. In the self-optimizing control structures proposed in the literature, the number of controlled variables required is typically equal to the number of degrees of freedom (inputs) that are available after all the equality and active inequality constrained variables are controlled. In this paper, we propose new self-optimizing control structures based on the null space approach, where depending on the number of disturbances, the number of active constraints, and the number of inputs, it is possible to decrease the number of process-dependent controlled variables by fixing linear combinations of the inputs. The effectiveness of the proposed selfoptimizing control structures with minimum number of process-dependent controlled variables is demonstrated in simulation by means of a continuous stirred tank reactor and an evaporatorFil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Zumoffen, David Alejandro Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaAmerican Chemical Society2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29714Marchetti, Alejandro Gabriel; Zumoffen, David Alejandro Ramon; Self-Optimizing Control Structures with Minimum Number of Process-Dependent Controlled Variables; American Chemical Society; Industrial & Engineering Chemical Research; 153; 4-2014; 10177-101930888-5885CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/ie5010509info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/ie5010509info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:53:41Zoai:ri.conicet.gov.ar:11336/29714instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:53:41.322CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Self-Optimizing Control Structures with Minimum Number of Process-Dependent Controlled Variables |
| title |
Self-Optimizing Control Structures with Minimum Number of Process-Dependent Controlled Variables |
| spellingShingle |
Self-Optimizing Control Structures with Minimum Number of Process-Dependent Controlled Variables Marchetti, Alejandro Gabriel Self-Optimizing Control Null-Space Method Minimum Number of Control Loops |
| title_short |
Self-Optimizing Control Structures with Minimum Number of Process-Dependent Controlled Variables |
| title_full |
Self-Optimizing Control Structures with Minimum Number of Process-Dependent Controlled Variables |
| title_fullStr |
Self-Optimizing Control Structures with Minimum Number of Process-Dependent Controlled Variables |
| title_full_unstemmed |
Self-Optimizing Control Structures with Minimum Number of Process-Dependent Controlled Variables |
| title_sort |
Self-Optimizing Control Structures with Minimum Number of Process-Dependent Controlled Variables |
| dc.creator.none.fl_str_mv |
Marchetti, Alejandro Gabriel Zumoffen, David Alejandro Ramon |
| author |
Marchetti, Alejandro Gabriel |
| author_facet |
Marchetti, Alejandro Gabriel Zumoffen, David Alejandro Ramon |
| author_role |
author |
| author2 |
Zumoffen, David Alejandro Ramon |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Self-Optimizing Control Null-Space Method Minimum Number of Control Loops |
| topic |
Self-Optimizing Control Null-Space Method Minimum Number of Control Loops |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
In order to operate continuous processes near the economically optimal steady-state operating point, selfoptimizing control schemes reformulate the optimization problem as a process control problem. The objective is to find controlled variables and constant set points such that the controller leads to optimal adjustments of the inputs in the presence of stable disturbances. In particular, the null space approach consists in selecting the self-optimizing controlled variables as linear combinations of the inactive output variables, based on the first-order variation of the necessary conditions of optimality. In the self-optimizing control structures proposed in the literature, the number of controlled variables required is typically equal to the number of degrees of freedom (inputs) that are available after all the equality and active inequality constrained variables are controlled. In this paper, we propose new self-optimizing control structures based on the null space approach, where depending on the number of disturbances, the number of active constraints, and the number of inputs, it is possible to decrease the number of process-dependent controlled variables by fixing linear combinations of the inputs. The effectiveness of the proposed selfoptimizing control structures with minimum number of process-dependent controlled variables is demonstrated in simulation by means of a continuous stirred tank reactor and an evaporator Fil: Marchetti, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Zumoffen, David Alejandro Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina |
| description |
In order to operate continuous processes near the economically optimal steady-state operating point, selfoptimizing control schemes reformulate the optimization problem as a process control problem. The objective is to find controlled variables and constant set points such that the controller leads to optimal adjustments of the inputs in the presence of stable disturbances. In particular, the null space approach consists in selecting the self-optimizing controlled variables as linear combinations of the inactive output variables, based on the first-order variation of the necessary conditions of optimality. In the self-optimizing control structures proposed in the literature, the number of controlled variables required is typically equal to the number of degrees of freedom (inputs) that are available after all the equality and active inequality constrained variables are controlled. In this paper, we propose new self-optimizing control structures based on the null space approach, where depending on the number of disturbances, the number of active constraints, and the number of inputs, it is possible to decrease the number of process-dependent controlled variables by fixing linear combinations of the inputs. The effectiveness of the proposed selfoptimizing control structures with minimum number of process-dependent controlled variables is demonstrated in simulation by means of a continuous stirred tank reactor and an evaporator |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/29714 Marchetti, Alejandro Gabriel; Zumoffen, David Alejandro Ramon; Self-Optimizing Control Structures with Minimum Number of Process-Dependent Controlled Variables; American Chemical Society; Industrial & Engineering Chemical Research; 153; 4-2014; 10177-10193 0888-5885 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/29714 |
| identifier_str_mv |
Marchetti, Alejandro Gabriel; Zumoffen, David Alejandro Ramon; Self-Optimizing Control Structures with Minimum Number of Process-Dependent Controlled Variables; American Chemical Society; Industrial & Engineering Chemical Research; 153; 4-2014; 10177-10193 0888-5885 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/ie5010509 info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/ie5010509 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Chemical Society |
| publisher.none.fl_str_mv |
American Chemical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782232984813568 |
| score |
12.982451 |