Cooling induces phase separation in membranes derived from isolated CNS myelin

Autores
Pusterla, Julio Martín; Schneck, Emanuel; Funari, Sérgio S.; Démé, Bruno; Tanaka, Motomu; Oliveira, Rafael Gustavo
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Purified myelin membranes (PMMs) are the starting material for biochemical analyses such as the isolation of detergent-insoluble glycosphingolipid-rich domains (DIGs), which are believed to be representatives of functional lipid rafts. The normal DIGs isolation protocol involves the extraction of lipids under moderate cooling. Here, we thus address the influence of cooling on the structure of PMMs and its sub-fractions. Thermodynamic and structural aspects of periodic, multilamellar PMMs are examined between 4C and 45C and in various biologically relevant aqueous solutions. The phase behavior is investigated by small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC). Complementary neutron diffraction (ND) experiments with solid-supported myelin multilayers confirm that the phase behavior is unaffected by planar confinement. SAXS and ND consistently show that multilamellar PMMs in pure water become heterogeneous when cooled by more than 10–15C below physiological temperature, as during the DIGs isolation procedure. The heterogeneous state of PMMs is stabilized in physiological solution, where phase coexistence persists up to near the physiological temperature. This result supports the general view that membranes under physiological conditions are close to critical points for phase separation. In presence of elevated Ca2+ concentrations (> 10 mM), phase coexistence is found even far above physiological temperatures. The relative fractions of the two phases, and thus presumably also their compositions, are found to vary with temperature. Depending on the conditions, an “expanded” phase with larger lamellar period or a “compacted” phase with smaller lamellar period coexists with the native phase. Both expanded and compacted periods are also observed in DIGs under the respective conditions. The observed subtle temperature-dependence of the phase behavior of PMMs suggests that the composition of DIGs is sensitive to the details of the isolation protocol.
Fil: Pusterla, Julio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentina
Fil: Schneck, Emanuel. Max Planck Institute of Colloids and Interfaces; Alemania
Fil: Funari, Sérgio S.. Deutsche Elektronen-synchrotron; Alemania
Fil: Démé, Bruno. Institut Laue Langevin; Francia
Fil: Tanaka, Motomu. Kyoto University; Japón. University of Heidelberg; Alemania
Fil: Oliveira, Rafael Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentina
Materia
MYELIN
BIOMEMBRANES
PHASE SEPARATION
SAXS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/57541

id CONICETDig_75aade2f37e34b999dff9275fe51db0e
oai_identifier_str oai:ri.conicet.gov.ar:11336/57541
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Cooling induces phase separation in membranes derived from isolated CNS myelinPusterla, Julio MartínSchneck, EmanuelFunari, Sérgio S.Démé, BrunoTanaka, MotomuOliveira, Rafael GustavoMYELINBIOMEMBRANESPHASE SEPARATIONSAXShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Purified myelin membranes (PMMs) are the starting material for biochemical analyses such as the isolation of detergent-insoluble glycosphingolipid-rich domains (DIGs), which are believed to be representatives of functional lipid rafts. The normal DIGs isolation protocol involves the extraction of lipids under moderate cooling. Here, we thus address the influence of cooling on the structure of PMMs and its sub-fractions. Thermodynamic and structural aspects of periodic, multilamellar PMMs are examined between 4C and 45C and in various biologically relevant aqueous solutions. The phase behavior is investigated by small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC). Complementary neutron diffraction (ND) experiments with solid-supported myelin multilayers confirm that the phase behavior is unaffected by planar confinement. SAXS and ND consistently show that multilamellar PMMs in pure water become heterogeneous when cooled by more than 10–15C below physiological temperature, as during the DIGs isolation procedure. The heterogeneous state of PMMs is stabilized in physiological solution, where phase coexistence persists up to near the physiological temperature. This result supports the general view that membranes under physiological conditions are close to critical points for phase separation. In presence of elevated Ca2+ concentrations (> 10 mM), phase coexistence is found even far above physiological temperatures. The relative fractions of the two phases, and thus presumably also their compositions, are found to vary with temperature. Depending on the conditions, an “expanded” phase with larger lamellar period or a “compacted” phase with smaller lamellar period coexists with the native phase. Both expanded and compacted periods are also observed in DIGs under the respective conditions. The observed subtle temperature-dependence of the phase behavior of PMMs suggests that the composition of DIGs is sensitive to the details of the isolation protocol.Fil: Pusterla, Julio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Schneck, Emanuel. Max Planck Institute of Colloids and Interfaces; AlemaniaFil: Funari, Sérgio S.. Deutsche Elektronen-synchrotron; AlemaniaFil: Démé, Bruno. Institut Laue Langevin; FranciaFil: Tanaka, Motomu. Kyoto University; Japón. University of Heidelberg; AlemaniaFil: Oliveira, Rafael Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaPublic Library of Science2017-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/57541Pusterla, Julio Martín; Schneck, Emanuel; Funari, Sérgio S.; Démé, Bruno; Tanaka, Motomu; et al.; Cooling induces phase separation in membranes derived from isolated CNS myelin; Public Library of Science; Plos One; 12; 9; 9-20171932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://dx.plos.org/10.1371/journal.pone.0184881info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0184881info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:07:33Zoai:ri.conicet.gov.ar:11336/57541instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:07:33.885CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Cooling induces phase separation in membranes derived from isolated CNS myelin
title Cooling induces phase separation in membranes derived from isolated CNS myelin
spellingShingle Cooling induces phase separation in membranes derived from isolated CNS myelin
Pusterla, Julio Martín
MYELIN
BIOMEMBRANES
PHASE SEPARATION
SAXS
title_short Cooling induces phase separation in membranes derived from isolated CNS myelin
title_full Cooling induces phase separation in membranes derived from isolated CNS myelin
title_fullStr Cooling induces phase separation in membranes derived from isolated CNS myelin
title_full_unstemmed Cooling induces phase separation in membranes derived from isolated CNS myelin
title_sort Cooling induces phase separation in membranes derived from isolated CNS myelin
dc.creator.none.fl_str_mv Pusterla, Julio Martín
Schneck, Emanuel
Funari, Sérgio S.
Démé, Bruno
Tanaka, Motomu
Oliveira, Rafael Gustavo
author Pusterla, Julio Martín
author_facet Pusterla, Julio Martín
Schneck, Emanuel
Funari, Sérgio S.
Démé, Bruno
Tanaka, Motomu
Oliveira, Rafael Gustavo
author_role author
author2 Schneck, Emanuel
Funari, Sérgio S.
Démé, Bruno
Tanaka, Motomu
Oliveira, Rafael Gustavo
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv MYELIN
BIOMEMBRANES
PHASE SEPARATION
SAXS
topic MYELIN
BIOMEMBRANES
PHASE SEPARATION
SAXS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Purified myelin membranes (PMMs) are the starting material for biochemical analyses such as the isolation of detergent-insoluble glycosphingolipid-rich domains (DIGs), which are believed to be representatives of functional lipid rafts. The normal DIGs isolation protocol involves the extraction of lipids under moderate cooling. Here, we thus address the influence of cooling on the structure of PMMs and its sub-fractions. Thermodynamic and structural aspects of periodic, multilamellar PMMs are examined between 4C and 45C and in various biologically relevant aqueous solutions. The phase behavior is investigated by small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC). Complementary neutron diffraction (ND) experiments with solid-supported myelin multilayers confirm that the phase behavior is unaffected by planar confinement. SAXS and ND consistently show that multilamellar PMMs in pure water become heterogeneous when cooled by more than 10–15C below physiological temperature, as during the DIGs isolation procedure. The heterogeneous state of PMMs is stabilized in physiological solution, where phase coexistence persists up to near the physiological temperature. This result supports the general view that membranes under physiological conditions are close to critical points for phase separation. In presence of elevated Ca2+ concentrations (> 10 mM), phase coexistence is found even far above physiological temperatures. The relative fractions of the two phases, and thus presumably also their compositions, are found to vary with temperature. Depending on the conditions, an “expanded” phase with larger lamellar period or a “compacted” phase with smaller lamellar period coexists with the native phase. Both expanded and compacted periods are also observed in DIGs under the respective conditions. The observed subtle temperature-dependence of the phase behavior of PMMs suggests that the composition of DIGs is sensitive to the details of the isolation protocol.
Fil: Pusterla, Julio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentina
Fil: Schneck, Emanuel. Max Planck Institute of Colloids and Interfaces; Alemania
Fil: Funari, Sérgio S.. Deutsche Elektronen-synchrotron; Alemania
Fil: Démé, Bruno. Institut Laue Langevin; Francia
Fil: Tanaka, Motomu. Kyoto University; Japón. University of Heidelberg; Alemania
Fil: Oliveira, Rafael Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; Argentina
description Purified myelin membranes (PMMs) are the starting material for biochemical analyses such as the isolation of detergent-insoluble glycosphingolipid-rich domains (DIGs), which are believed to be representatives of functional lipid rafts. The normal DIGs isolation protocol involves the extraction of lipids under moderate cooling. Here, we thus address the influence of cooling on the structure of PMMs and its sub-fractions. Thermodynamic and structural aspects of periodic, multilamellar PMMs are examined between 4C and 45C and in various biologically relevant aqueous solutions. The phase behavior is investigated by small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC). Complementary neutron diffraction (ND) experiments with solid-supported myelin multilayers confirm that the phase behavior is unaffected by planar confinement. SAXS and ND consistently show that multilamellar PMMs in pure water become heterogeneous when cooled by more than 10–15C below physiological temperature, as during the DIGs isolation procedure. The heterogeneous state of PMMs is stabilized in physiological solution, where phase coexistence persists up to near the physiological temperature. This result supports the general view that membranes under physiological conditions are close to critical points for phase separation. In presence of elevated Ca2+ concentrations (> 10 mM), phase coexistence is found even far above physiological temperatures. The relative fractions of the two phases, and thus presumably also their compositions, are found to vary with temperature. Depending on the conditions, an “expanded” phase with larger lamellar period or a “compacted” phase with smaller lamellar period coexists with the native phase. Both expanded and compacted periods are also observed in DIGs under the respective conditions. The observed subtle temperature-dependence of the phase behavior of PMMs suggests that the composition of DIGs is sensitive to the details of the isolation protocol.
publishDate 2017
dc.date.none.fl_str_mv 2017-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/57541
Pusterla, Julio Martín; Schneck, Emanuel; Funari, Sérgio S.; Démé, Bruno; Tanaka, Motomu; et al.; Cooling induces phase separation in membranes derived from isolated CNS myelin; Public Library of Science; Plos One; 12; 9; 9-2017
1932-6203
CONICET Digital
CONICET
url http://hdl.handle.net/11336/57541
identifier_str_mv Pusterla, Julio Martín; Schneck, Emanuel; Funari, Sérgio S.; Démé, Bruno; Tanaka, Motomu; et al.; Cooling induces phase separation in membranes derived from isolated CNS myelin; Public Library of Science; Plos One; 12; 9; 9-2017
1932-6203
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://dx.plos.org/10.1371/journal.pone.0184881
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0184881
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606399036162048
score 13.001348