Local Environments in Iron-Bearing Clay Minerals by DFT Approaches: The Case of Structural Fe in Kaolinite
- Autores
- Richard, Diego; Rendtorff Birrer, Nicolás Maximiliano
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Technological properties of kaolins depend on the internal structure of the particles that constitute them. For this reason, unraveling the structural features from the micro to the nanoscale is a permanent matter of interest, even in the case of raw samples. From the experimental point of view, because naturally-occurring kaolins contain iron, Mössbauer spectroscopy is a very convenient technique to reach the nanoscopic scale avoiding experimental difficulties related to the sample's lack of structural order at the crystallographic scale. In this work, first-principles calculations based on the Density Functional Theory (DFT) were used to model such iron environments in kaolinite, and to assess the performance of the Gauge-Included Projector Augmented Waves (GIPAW) method to describe the changes to the host structure and the electronic modifications produced by the iron atoms. To this purpose, structural relaxation, Grimme's D2 dispersion, and Hubbard corrections (DFT+U approach) were considered. A detailed analysis was done for the obtained predictions for the Fe local structure, oxidation state, and Mössbauer quadrupole splitting, including comparisons with available experimental data. The results contribute to better understand the naturally-occurring kaolins, and support the DFT+U approach for the description of the layer structure and the electronic properties of iron-containing clay minerals.
Fil: Richard, Diego. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina
Fil: Rendtorff Birrer, Nicolás Maximiliano. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina - Materia
-
CLAY
DFT
ELECTRON TRANSFER
IRON-DOPED MATERIALS
KAOLINITE
MÖSSBAUER - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/180769
Ver los metadatos del registro completo
id |
CONICETDig_758bed6cf3d6e4a7e34ef379955811f0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/180769 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Local Environments in Iron-Bearing Clay Minerals by DFT Approaches: The Case of Structural Fe in KaoliniteRichard, DiegoRendtorff Birrer, Nicolás MaximilianoCLAYDFTELECTRON TRANSFERIRON-DOPED MATERIALSKAOLINITEMÖSSBAUERhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Technological properties of kaolins depend on the internal structure of the particles that constitute them. For this reason, unraveling the structural features from the micro to the nanoscale is a permanent matter of interest, even in the case of raw samples. From the experimental point of view, because naturally-occurring kaolins contain iron, Mössbauer spectroscopy is a very convenient technique to reach the nanoscopic scale avoiding experimental difficulties related to the sample's lack of structural order at the crystallographic scale. In this work, first-principles calculations based on the Density Functional Theory (DFT) were used to model such iron environments in kaolinite, and to assess the performance of the Gauge-Included Projector Augmented Waves (GIPAW) method to describe the changes to the host structure and the electronic modifications produced by the iron atoms. To this purpose, structural relaxation, Grimme's D2 dispersion, and Hubbard corrections (DFT+U approach) were considered. A detailed analysis was done for the obtained predictions for the Fe local structure, oxidation state, and Mössbauer quadrupole splitting, including comparisons with available experimental data. The results contribute to better understand the naturally-occurring kaolins, and support the DFT+U approach for the description of the layer structure and the electronic properties of iron-containing clay minerals.Fil: Richard, Diego. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaFil: Rendtorff Birrer, Nicolás Maximiliano. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaElsevier Science2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/180769Richard, Diego; Rendtorff Birrer, Nicolás Maximiliano; Local Environments in Iron-Bearing Clay Minerals by DFT Approaches: The Case of Structural Fe in Kaolinite; Elsevier Science; Applied Clay Science; 213; 106251; 11-2021; 1-80169-1317CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.clay.2021.106251info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169131721002751info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:56Zoai:ri.conicet.gov.ar:11336/180769instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:56.708CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Local Environments in Iron-Bearing Clay Minerals by DFT Approaches: The Case of Structural Fe in Kaolinite |
title |
Local Environments in Iron-Bearing Clay Minerals by DFT Approaches: The Case of Structural Fe in Kaolinite |
spellingShingle |
Local Environments in Iron-Bearing Clay Minerals by DFT Approaches: The Case of Structural Fe in Kaolinite Richard, Diego CLAY DFT ELECTRON TRANSFER IRON-DOPED MATERIALS KAOLINITE MÖSSBAUER |
title_short |
Local Environments in Iron-Bearing Clay Minerals by DFT Approaches: The Case of Structural Fe in Kaolinite |
title_full |
Local Environments in Iron-Bearing Clay Minerals by DFT Approaches: The Case of Structural Fe in Kaolinite |
title_fullStr |
Local Environments in Iron-Bearing Clay Minerals by DFT Approaches: The Case of Structural Fe in Kaolinite |
title_full_unstemmed |
Local Environments in Iron-Bearing Clay Minerals by DFT Approaches: The Case of Structural Fe in Kaolinite |
title_sort |
Local Environments in Iron-Bearing Clay Minerals by DFT Approaches: The Case of Structural Fe in Kaolinite |
dc.creator.none.fl_str_mv |
Richard, Diego Rendtorff Birrer, Nicolás Maximiliano |
author |
Richard, Diego |
author_facet |
Richard, Diego Rendtorff Birrer, Nicolás Maximiliano |
author_role |
author |
author2 |
Rendtorff Birrer, Nicolás Maximiliano |
author2_role |
author |
dc.subject.none.fl_str_mv |
CLAY DFT ELECTRON TRANSFER IRON-DOPED MATERIALS KAOLINITE MÖSSBAUER |
topic |
CLAY DFT ELECTRON TRANSFER IRON-DOPED MATERIALS KAOLINITE MÖSSBAUER |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Technological properties of kaolins depend on the internal structure of the particles that constitute them. For this reason, unraveling the structural features from the micro to the nanoscale is a permanent matter of interest, even in the case of raw samples. From the experimental point of view, because naturally-occurring kaolins contain iron, Mössbauer spectroscopy is a very convenient technique to reach the nanoscopic scale avoiding experimental difficulties related to the sample's lack of structural order at the crystallographic scale. In this work, first-principles calculations based on the Density Functional Theory (DFT) were used to model such iron environments in kaolinite, and to assess the performance of the Gauge-Included Projector Augmented Waves (GIPAW) method to describe the changes to the host structure and the electronic modifications produced by the iron atoms. To this purpose, structural relaxation, Grimme's D2 dispersion, and Hubbard corrections (DFT+U approach) were considered. A detailed analysis was done for the obtained predictions for the Fe local structure, oxidation state, and Mössbauer quadrupole splitting, including comparisons with available experimental data. The results contribute to better understand the naturally-occurring kaolins, and support the DFT+U approach for the description of the layer structure and the electronic properties of iron-containing clay minerals. Fil: Richard, Diego. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina Fil: Rendtorff Birrer, Nicolás Maximiliano. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina |
description |
Technological properties of kaolins depend on the internal structure of the particles that constitute them. For this reason, unraveling the structural features from the micro to the nanoscale is a permanent matter of interest, even in the case of raw samples. From the experimental point of view, because naturally-occurring kaolins contain iron, Mössbauer spectroscopy is a very convenient technique to reach the nanoscopic scale avoiding experimental difficulties related to the sample's lack of structural order at the crystallographic scale. In this work, first-principles calculations based on the Density Functional Theory (DFT) were used to model such iron environments in kaolinite, and to assess the performance of the Gauge-Included Projector Augmented Waves (GIPAW) method to describe the changes to the host structure and the electronic modifications produced by the iron atoms. To this purpose, structural relaxation, Grimme's D2 dispersion, and Hubbard corrections (DFT+U approach) were considered. A detailed analysis was done for the obtained predictions for the Fe local structure, oxidation state, and Mössbauer quadrupole splitting, including comparisons with available experimental data. The results contribute to better understand the naturally-occurring kaolins, and support the DFT+U approach for the description of the layer structure and the electronic properties of iron-containing clay minerals. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/180769 Richard, Diego; Rendtorff Birrer, Nicolás Maximiliano; Local Environments in Iron-Bearing Clay Minerals by DFT Approaches: The Case of Structural Fe in Kaolinite; Elsevier Science; Applied Clay Science; 213; 106251; 11-2021; 1-8 0169-1317 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/180769 |
identifier_str_mv |
Richard, Diego; Rendtorff Birrer, Nicolás Maximiliano; Local Environments in Iron-Bearing Clay Minerals by DFT Approaches: The Case of Structural Fe in Kaolinite; Elsevier Science; Applied Clay Science; 213; 106251; 11-2021; 1-8 0169-1317 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.clay.2021.106251 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169131721002751 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614355115573248 |
score |
13.070432 |