Exploring networks with traceroute-like probes: theory and simulations
- Autores
- Dall'Asta, Luca; Alvarez Hamelin, José Ignacio; Barrat, Alain; Vázquez, Alexei; Vespignani, Alessandro
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Mapping the Internet generally consists in sampling the network from a limited set of sources by using traceroute-like probes. This methodology, akin to the merging of different spanning trees to a set of destination, has been argued to introduce uncontrolled sampling biases that might produce statistical properties of the sampled graph which sharply differ from the original ones. In this paper, we explore these biases and provide a statistical analysis of their origin. We derive an analytical approximation for the probability of edge and vertex detection that exploits the role of the number of sources and targets and allows us to relate the global topological properties of the underlying network with the statistical accuracy of the sampled graph. In particular, we find that the edge and vertex detection probability depends on the betweenness centrality of each element. This allows us to show that shortest path routed sampling provides a better characterization of underlying graphs with broad distributions of connectivity. We complement the analytical discussion with a throughout numerical investigation of simulated mapping strategies in network models with different topologies. We show that sampled graphs provide a fair qualitative characterization of the statistical properties of the original networks in a fair range of different strategies and exploration parameters. Moreover, we characterize the level of redundancy and completeness of the exploration process as a function of the topological properties of the network. Finally, we study numerically how the fraction of vertices and edges discovered in the sampled graph depends on the particular deployements of probing sources. The results might hint the steps toward more efficient mapping strategies.
Fil: Dall'Asta, Luca. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Alvarez Hamelin, José Ignacio. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Barrat, Alain. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Vázquez, Alexei. University Of Notre Dame; Estados Unidos
Fil: Vespignani, Alessandro. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia. Indiana University; Estados Unidos - Materia
-
Traceroute
Internet exploration
Topology inference - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/20027
Ver los metadatos del registro completo
id |
CONICETDig_7515116f69c6846d91a1708a9a747b16 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/20027 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Exploring networks with traceroute-like probes: theory and simulationsDall'Asta, LucaAlvarez Hamelin, José IgnacioBarrat, AlainVázquez, AlexeiVespignani, AlessandroTracerouteInternet explorationTopology inferenceMapping the Internet generally consists in sampling the network from a limited set of sources by using traceroute-like probes. This methodology, akin to the merging of different spanning trees to a set of destination, has been argued to introduce uncontrolled sampling biases that might produce statistical properties of the sampled graph which sharply differ from the original ones. In this paper, we explore these biases and provide a statistical analysis of their origin. We derive an analytical approximation for the probability of edge and vertex detection that exploits the role of the number of sources and targets and allows us to relate the global topological properties of the underlying network with the statistical accuracy of the sampled graph. In particular, we find that the edge and vertex detection probability depends on the betweenness centrality of each element. This allows us to show that shortest path routed sampling provides a better characterization of underlying graphs with broad distributions of connectivity. We complement the analytical discussion with a throughout numerical investigation of simulated mapping strategies in network models with different topologies. We show that sampled graphs provide a fair qualitative characterization of the statistical properties of the original networks in a fair range of different strategies and exploration parameters. Moreover, we characterize the level of redundancy and completeness of the exploration process as a function of the topological properties of the network. Finally, we study numerically how the fraction of vertices and edges discovered in the sampled graph depends on the particular deployements of probing sources. The results might hint the steps toward more efficient mapping strategies.Fil: Dall'Asta, Luca. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; FranciaFil: Alvarez Hamelin, José Ignacio. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Barrat, Alain. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; FranciaFil: Vázquez, Alexei. University Of Notre Dame; Estados UnidosFil: Vespignani, Alessandro. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia. Indiana University; Estados UnidosElsevier Science2006-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20027Dall'Asta, Luca; Alvarez Hamelin, José Ignacio; Barrat, Alain; Vázquez, Alexei; Vespignani, Alessandro; Exploring networks with traceroute-like probes: theory and simulations; Elsevier Science; Theoretical Computer Science; 355; 1; 4-2006; 6-240304-3975CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2005.12.009info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0304397505009126info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/cs/0412007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:05Zoai:ri.conicet.gov.ar:11336/20027instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:05.221CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Exploring networks with traceroute-like probes: theory and simulations |
title |
Exploring networks with traceroute-like probes: theory and simulations |
spellingShingle |
Exploring networks with traceroute-like probes: theory and simulations Dall'Asta, Luca Traceroute Internet exploration Topology inference |
title_short |
Exploring networks with traceroute-like probes: theory and simulations |
title_full |
Exploring networks with traceroute-like probes: theory and simulations |
title_fullStr |
Exploring networks with traceroute-like probes: theory and simulations |
title_full_unstemmed |
Exploring networks with traceroute-like probes: theory and simulations |
title_sort |
Exploring networks with traceroute-like probes: theory and simulations |
dc.creator.none.fl_str_mv |
Dall'Asta, Luca Alvarez Hamelin, José Ignacio Barrat, Alain Vázquez, Alexei Vespignani, Alessandro |
author |
Dall'Asta, Luca |
author_facet |
Dall'Asta, Luca Alvarez Hamelin, José Ignacio Barrat, Alain Vázquez, Alexei Vespignani, Alessandro |
author_role |
author |
author2 |
Alvarez Hamelin, José Ignacio Barrat, Alain Vázquez, Alexei Vespignani, Alessandro |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Traceroute Internet exploration Topology inference |
topic |
Traceroute Internet exploration Topology inference |
dc.description.none.fl_txt_mv |
Mapping the Internet generally consists in sampling the network from a limited set of sources by using traceroute-like probes. This methodology, akin to the merging of different spanning trees to a set of destination, has been argued to introduce uncontrolled sampling biases that might produce statistical properties of the sampled graph which sharply differ from the original ones. In this paper, we explore these biases and provide a statistical analysis of their origin. We derive an analytical approximation for the probability of edge and vertex detection that exploits the role of the number of sources and targets and allows us to relate the global topological properties of the underlying network with the statistical accuracy of the sampled graph. In particular, we find that the edge and vertex detection probability depends on the betweenness centrality of each element. This allows us to show that shortest path routed sampling provides a better characterization of underlying graphs with broad distributions of connectivity. We complement the analytical discussion with a throughout numerical investigation of simulated mapping strategies in network models with different topologies. We show that sampled graphs provide a fair qualitative characterization of the statistical properties of the original networks in a fair range of different strategies and exploration parameters. Moreover, we characterize the level of redundancy and completeness of the exploration process as a function of the topological properties of the network. Finally, we study numerically how the fraction of vertices and edges discovered in the sampled graph depends on the particular deployements of probing sources. The results might hint the steps toward more efficient mapping strategies. Fil: Dall'Asta, Luca. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia Fil: Alvarez Hamelin, José Ignacio. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Barrat, Alain. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia Fil: Vázquez, Alexei. University Of Notre Dame; Estados Unidos Fil: Vespignani, Alessandro. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia. Indiana University; Estados Unidos |
description |
Mapping the Internet generally consists in sampling the network from a limited set of sources by using traceroute-like probes. This methodology, akin to the merging of different spanning trees to a set of destination, has been argued to introduce uncontrolled sampling biases that might produce statistical properties of the sampled graph which sharply differ from the original ones. In this paper, we explore these biases and provide a statistical analysis of their origin. We derive an analytical approximation for the probability of edge and vertex detection that exploits the role of the number of sources and targets and allows us to relate the global topological properties of the underlying network with the statistical accuracy of the sampled graph. In particular, we find that the edge and vertex detection probability depends on the betweenness centrality of each element. This allows us to show that shortest path routed sampling provides a better characterization of underlying graphs with broad distributions of connectivity. We complement the analytical discussion with a throughout numerical investigation of simulated mapping strategies in network models with different topologies. We show that sampled graphs provide a fair qualitative characterization of the statistical properties of the original networks in a fair range of different strategies and exploration parameters. Moreover, we characterize the level of redundancy and completeness of the exploration process as a function of the topological properties of the network. Finally, we study numerically how the fraction of vertices and edges discovered in the sampled graph depends on the particular deployements of probing sources. The results might hint the steps toward more efficient mapping strategies. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/20027 Dall'Asta, Luca; Alvarez Hamelin, José Ignacio; Barrat, Alain; Vázquez, Alexei; Vespignani, Alessandro; Exploring networks with traceroute-like probes: theory and simulations; Elsevier Science; Theoretical Computer Science; 355; 1; 4-2006; 6-24 0304-3975 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/20027 |
identifier_str_mv |
Dall'Asta, Luca; Alvarez Hamelin, José Ignacio; Barrat, Alain; Vázquez, Alexei; Vespignani, Alessandro; Exploring networks with traceroute-like probes: theory and simulations; Elsevier Science; Theoretical Computer Science; 355; 1; 4-2006; 6-24 0304-3975 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2005.12.009 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0304397505009126 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/cs/0412007 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269134836989952 |
score |
13.13397 |