Exploring networks with traceroute-like probes: theory and simulations

Autores
Dall'Asta, Luca; Alvarez Hamelin, José Ignacio; Barrat, Alain; Vázquez, Alexei; Vespignani, Alessandro
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Mapping the Internet generally consists in sampling the network from a limited set of sources by using traceroute-like probes. This methodology, akin to the merging of different spanning trees to a set of destination, has been argued to introduce uncontrolled sampling biases that might produce statistical properties of the sampled graph which sharply differ from the original ones. In this paper, we explore these biases and provide a statistical analysis of their origin. We derive an analytical approximation for the probability of edge and vertex detection that exploits the role of the number of sources and targets and allows us to relate the global topological properties of the underlying network with the statistical accuracy of the sampled graph. In particular, we find that the edge and vertex detection probability depends on the betweenness centrality of each element. This allows us to show that shortest path routed sampling provides a better characterization of underlying graphs with broad distributions of connectivity. We complement the analytical discussion with a throughout numerical investigation of simulated mapping strategies in network models with different topologies. We show that sampled graphs provide a fair qualitative characterization of the statistical properties of the original networks in a fair range of different strategies and exploration parameters. Moreover, we characterize the level of redundancy and completeness of the exploration process as a function of the topological properties of the network. Finally, we study numerically how the fraction of vertices and edges discovered in the sampled graph depends on the particular deployements of probing sources. The results might hint the steps toward more efficient mapping strategies.
Fil: Dall'Asta, Luca. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Alvarez Hamelin, José Ignacio. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Barrat, Alain. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Vázquez, Alexei. University Of Notre Dame; Estados Unidos
Fil: Vespignani, Alessandro. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia. Indiana University; Estados Unidos
Materia
Traceroute
Internet exploration
Topology inference
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/20027

id CONICETDig_7515116f69c6846d91a1708a9a747b16
oai_identifier_str oai:ri.conicet.gov.ar:11336/20027
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Exploring networks with traceroute-like probes: theory and simulationsDall'Asta, LucaAlvarez Hamelin, José IgnacioBarrat, AlainVázquez, AlexeiVespignani, AlessandroTracerouteInternet explorationTopology inferenceMapping the Internet generally consists in sampling the network from a limited set of sources by using traceroute-like probes. This methodology, akin to the merging of different spanning trees to a set of destination, has been argued to introduce uncontrolled sampling biases that might produce statistical properties of the sampled graph which sharply differ from the original ones. In this paper, we explore these biases and provide a statistical analysis of their origin. We derive an analytical approximation for the probability of edge and vertex detection that exploits the role of the number of sources and targets and allows us to relate the global topological properties of the underlying network with the statistical accuracy of the sampled graph. In particular, we find that the edge and vertex detection probability depends on the betweenness centrality of each element. This allows us to show that shortest path routed sampling provides a better characterization of underlying graphs with broad distributions of connectivity. We complement the analytical discussion with a throughout numerical investigation of simulated mapping strategies in network models with different topologies. We show that sampled graphs provide a fair qualitative characterization of the statistical properties of the original networks in a fair range of different strategies and exploration parameters. Moreover, we characterize the level of redundancy and completeness of the exploration process as a function of the topological properties of the network. Finally, we study numerically how the fraction of vertices and edges discovered in the sampled graph depends on the particular deployements of probing sources. The results might hint the steps toward more efficient mapping strategies.Fil: Dall'Asta, Luca. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; FranciaFil: Alvarez Hamelin, José Ignacio. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Barrat, Alain. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; FranciaFil: Vázquez, Alexei. University Of Notre Dame; Estados UnidosFil: Vespignani, Alessandro. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia. Indiana University; Estados UnidosElsevier Science2006-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20027Dall'Asta, Luca; Alvarez Hamelin, José Ignacio; Barrat, Alain; Vázquez, Alexei; Vespignani, Alessandro; Exploring networks with traceroute-like probes: theory and simulations; Elsevier Science; Theoretical Computer Science; 355; 1; 4-2006; 6-240304-3975CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2005.12.009info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0304397505009126info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/cs/0412007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:05Zoai:ri.conicet.gov.ar:11336/20027instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:05.221CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Exploring networks with traceroute-like probes: theory and simulations
title Exploring networks with traceroute-like probes: theory and simulations
spellingShingle Exploring networks with traceroute-like probes: theory and simulations
Dall'Asta, Luca
Traceroute
Internet exploration
Topology inference
title_short Exploring networks with traceroute-like probes: theory and simulations
title_full Exploring networks with traceroute-like probes: theory and simulations
title_fullStr Exploring networks with traceroute-like probes: theory and simulations
title_full_unstemmed Exploring networks with traceroute-like probes: theory and simulations
title_sort Exploring networks with traceroute-like probes: theory and simulations
dc.creator.none.fl_str_mv Dall'Asta, Luca
Alvarez Hamelin, José Ignacio
Barrat, Alain
Vázquez, Alexei
Vespignani, Alessandro
author Dall'Asta, Luca
author_facet Dall'Asta, Luca
Alvarez Hamelin, José Ignacio
Barrat, Alain
Vázquez, Alexei
Vespignani, Alessandro
author_role author
author2 Alvarez Hamelin, José Ignacio
Barrat, Alain
Vázquez, Alexei
Vespignani, Alessandro
author2_role author
author
author
author
dc.subject.none.fl_str_mv Traceroute
Internet exploration
Topology inference
topic Traceroute
Internet exploration
Topology inference
dc.description.none.fl_txt_mv Mapping the Internet generally consists in sampling the network from a limited set of sources by using traceroute-like probes. This methodology, akin to the merging of different spanning trees to a set of destination, has been argued to introduce uncontrolled sampling biases that might produce statistical properties of the sampled graph which sharply differ from the original ones. In this paper, we explore these biases and provide a statistical analysis of their origin. We derive an analytical approximation for the probability of edge and vertex detection that exploits the role of the number of sources and targets and allows us to relate the global topological properties of the underlying network with the statistical accuracy of the sampled graph. In particular, we find that the edge and vertex detection probability depends on the betweenness centrality of each element. This allows us to show that shortest path routed sampling provides a better characterization of underlying graphs with broad distributions of connectivity. We complement the analytical discussion with a throughout numerical investigation of simulated mapping strategies in network models with different topologies. We show that sampled graphs provide a fair qualitative characterization of the statistical properties of the original networks in a fair range of different strategies and exploration parameters. Moreover, we characterize the level of redundancy and completeness of the exploration process as a function of the topological properties of the network. Finally, we study numerically how the fraction of vertices and edges discovered in the sampled graph depends on the particular deployements of probing sources. The results might hint the steps toward more efficient mapping strategies.
Fil: Dall'Asta, Luca. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Alvarez Hamelin, José Ignacio. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Barrat, Alain. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Vázquez, Alexei. University Of Notre Dame; Estados Unidos
Fil: Vespignani, Alessandro. Universite Paris Sud; Francia. Centre National de la Recherche Scientifique; Francia. Indiana University; Estados Unidos
description Mapping the Internet generally consists in sampling the network from a limited set of sources by using traceroute-like probes. This methodology, akin to the merging of different spanning trees to a set of destination, has been argued to introduce uncontrolled sampling biases that might produce statistical properties of the sampled graph which sharply differ from the original ones. In this paper, we explore these biases and provide a statistical analysis of their origin. We derive an analytical approximation for the probability of edge and vertex detection that exploits the role of the number of sources and targets and allows us to relate the global topological properties of the underlying network with the statistical accuracy of the sampled graph. In particular, we find that the edge and vertex detection probability depends on the betweenness centrality of each element. This allows us to show that shortest path routed sampling provides a better characterization of underlying graphs with broad distributions of connectivity. We complement the analytical discussion with a throughout numerical investigation of simulated mapping strategies in network models with different topologies. We show that sampled graphs provide a fair qualitative characterization of the statistical properties of the original networks in a fair range of different strategies and exploration parameters. Moreover, we characterize the level of redundancy and completeness of the exploration process as a function of the topological properties of the network. Finally, we study numerically how the fraction of vertices and edges discovered in the sampled graph depends on the particular deployements of probing sources. The results might hint the steps toward more efficient mapping strategies.
publishDate 2006
dc.date.none.fl_str_mv 2006-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/20027
Dall'Asta, Luca; Alvarez Hamelin, José Ignacio; Barrat, Alain; Vázquez, Alexei; Vespignani, Alessandro; Exploring networks with traceroute-like probes: theory and simulations; Elsevier Science; Theoretical Computer Science; 355; 1; 4-2006; 6-24
0304-3975
CONICET Digital
CONICET
url http://hdl.handle.net/11336/20027
identifier_str_mv Dall'Asta, Luca; Alvarez Hamelin, José Ignacio; Barrat, Alain; Vázquez, Alexei; Vespignani, Alessandro; Exploring networks with traceroute-like probes: theory and simulations; Elsevier Science; Theoretical Computer Science; 355; 1; 4-2006; 6-24
0304-3975
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2005.12.009
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0304397505009126
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/cs/0412007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269134836989952
score 13.13397