Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics

Autores
Craiem, Damian; Magin, Richard L.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
New lumped-element models of red blood cell mechanics can be constructed using fractional order generalizations of springs and dashpots. Such 'spring-pots' exhibit a fractional order viscoelastic behavior that captures a wide spectrum of experimental results through power-law expressions in both the time and frequency domains. The system dynamics is fully described by linear fractional order differential equations derived from first order stress-strain relationships using the tools of fractional calculus. Changes in the composition or structure of the membrane are conveniently expressed in the fractional order of the model system. This approach provides a concise way to describe and quantify the biomechanical behavior of membranes, cells and tissues.
Fil: Craiem, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Favaloro; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Magin, Richard L.. University of Illinois at Chicago ; Estados Unidos
Materia
Biomechanics
Blood Viscosity
Elasticity
Erithrocyte
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/53715

id CONICETDig_73e49418e48d84946269b2ed6f0b2312
oai_identifier_str oai:ri.conicet.gov.ar:11336/53715
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanicsCraiem, DamianMagin, Richard L.BiomechanicsBlood ViscosityElasticityErithrocytehttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2New lumped-element models of red blood cell mechanics can be constructed using fractional order generalizations of springs and dashpots. Such 'spring-pots' exhibit a fractional order viscoelastic behavior that captures a wide spectrum of experimental results through power-law expressions in both the time and frequency domains. The system dynamics is fully described by linear fractional order differential equations derived from first order stress-strain relationships using the tools of fractional calculus. Changes in the composition or structure of the membrane are conveniently expressed in the fractional order of the model system. This approach provides a concise way to describe and quantify the biomechanical behavior of membranes, cells and tissues.Fil: Craiem, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Favaloro; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Magin, Richard L.. University of Illinois at Chicago ; Estados UnidosIOP Publishing2010-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53715Craiem, Damian; Magin, Richard L.; Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics; IOP Publishing; Physical Biology; 7; 1; 1-2010; 13001-130031478-3967CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1478-3975/7/1/013001/metainfo:eu-repo/semantics/altIdentifier/doi/10.1088/1478-3975/7/1/013001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:31Zoai:ri.conicet.gov.ar:11336/53715instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:31.551CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics
title Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics
spellingShingle Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics
Craiem, Damian
Biomechanics
Blood Viscosity
Elasticity
Erithrocyte
title_short Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics
title_full Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics
title_fullStr Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics
title_full_unstemmed Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics
title_sort Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics
dc.creator.none.fl_str_mv Craiem, Damian
Magin, Richard L.
author Craiem, Damian
author_facet Craiem, Damian
Magin, Richard L.
author_role author
author2 Magin, Richard L.
author2_role author
dc.subject.none.fl_str_mv Biomechanics
Blood Viscosity
Elasticity
Erithrocyte
topic Biomechanics
Blood Viscosity
Elasticity
Erithrocyte
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv New lumped-element models of red blood cell mechanics can be constructed using fractional order generalizations of springs and dashpots. Such 'spring-pots' exhibit a fractional order viscoelastic behavior that captures a wide spectrum of experimental results through power-law expressions in both the time and frequency domains. The system dynamics is fully described by linear fractional order differential equations derived from first order stress-strain relationships using the tools of fractional calculus. Changes in the composition or structure of the membrane are conveniently expressed in the fractional order of the model system. This approach provides a concise way to describe and quantify the biomechanical behavior of membranes, cells and tissues.
Fil: Craiem, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Favaloro; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Magin, Richard L.. University of Illinois at Chicago ; Estados Unidos
description New lumped-element models of red blood cell mechanics can be constructed using fractional order generalizations of springs and dashpots. Such 'spring-pots' exhibit a fractional order viscoelastic behavior that captures a wide spectrum of experimental results through power-law expressions in both the time and frequency domains. The system dynamics is fully described by linear fractional order differential equations derived from first order stress-strain relationships using the tools of fractional calculus. Changes in the composition or structure of the membrane are conveniently expressed in the fractional order of the model system. This approach provides a concise way to describe and quantify the biomechanical behavior of membranes, cells and tissues.
publishDate 2010
dc.date.none.fl_str_mv 2010-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/53715
Craiem, Damian; Magin, Richard L.; Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics; IOP Publishing; Physical Biology; 7; 1; 1-2010; 13001-13003
1478-3967
CONICET Digital
CONICET
url http://hdl.handle.net/11336/53715
identifier_str_mv Craiem, Damian; Magin, Richard L.; Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics; IOP Publishing; Physical Biology; 7; 1; 1-2010; 13001-13003
1478-3967
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1478-3975/7/1/013001/meta
info:eu-repo/semantics/altIdentifier/doi/10.1088/1478-3975/7/1/013001
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614350811168768
score 13.070432