Procrustes analysis as a tool for land management
- Autores
- Matteucci, Silvia Diana; Pla, Laura
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Generalized Procrustes analysis (GPA) is a multivariate technique that involves transformations of data matrices to provide optimal comparability. We propose GPA to quantify the concordance among sets of variables that characterize natural, human and productive subsystems. When the land use fits in with the physical support of agricultural production, people’s well-being should be evident in a high concordance between the land use and the social conditions. In a situation of instability each set of variables operates in diverse directions resulting in lower resilience and sustainability. Two GPA were performed, between physical support and land use data sets (concordance = 67.4%), and between land use and social conditions data sets (concordance = 65.3%). The interplay between the pair of concordance values constitutes a bi-dimensional index which serves as an ecological indicator. Based on bootstrap confidence interval, the 49 counties of the Pampa Ecoregion, Argentina, were classified in medium, high or low concordance. The lack of concordance is an indicator of imbalances which may contribute to guide environmental management.
Fil: Matteucci, Silvia Diana. Universidad de Buenos Aires. Facultad de Arquitectura y Urbanismo. Grupo de Ecología del Paisaje y Medio Ambiente; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pla, Laura. Universidad Nacional Experimental Francisco de Miranda; Venezuela - Materia
-
Ecologica Indicator
Matrix Concordance Space
Environmental Policy
Land Use - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/16362
Ver los metadatos del registro completo
id |
CONICETDig_73911759d775b48c5900667011fa508e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/16362 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Procrustes analysis as a tool for land managementMatteucci, Silvia DianaPla, LauraEcologica IndicatorMatrix Concordance SpaceEnvironmental PolicyLand Usehttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Generalized Procrustes analysis (GPA) is a multivariate technique that involves transformations of data matrices to provide optimal comparability. We propose GPA to quantify the concordance among sets of variables that characterize natural, human and productive subsystems. When the land use fits in with the physical support of agricultural production, people’s well-being should be evident in a high concordance between the land use and the social conditions. In a situation of instability each set of variables operates in diverse directions resulting in lower resilience and sustainability. Two GPA were performed, between physical support and land use data sets (concordance = 67.4%), and between land use and social conditions data sets (concordance = 65.3%). The interplay between the pair of concordance values constitutes a bi-dimensional index which serves as an ecological indicator. Based on bootstrap confidence interval, the 49 counties of the Pampa Ecoregion, Argentina, were classified in medium, high or low concordance. The lack of concordance is an indicator of imbalances which may contribute to guide environmental management.Fil: Matteucci, Silvia Diana. Universidad de Buenos Aires. Facultad de Arquitectura y Urbanismo. Grupo de Ecología del Paisaje y Medio Ambiente; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pla, Laura. Universidad Nacional Experimental Francisco de Miranda; VenezuelaElsevier Science2010-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16362Matteucci, Silvia Diana; Pla, Laura; Procrustes analysis as a tool for land management; Elsevier Science; Ecological Indicators; 10; 2; 3-2010; 516-5261470-160Xenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecolind.2009.09.005info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1470160X09001538info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:12Zoai:ri.conicet.gov.ar:11336/16362instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:12.62CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Procrustes analysis as a tool for land management |
title |
Procrustes analysis as a tool for land management |
spellingShingle |
Procrustes analysis as a tool for land management Matteucci, Silvia Diana Ecologica Indicator Matrix Concordance Space Environmental Policy Land Use |
title_short |
Procrustes analysis as a tool for land management |
title_full |
Procrustes analysis as a tool for land management |
title_fullStr |
Procrustes analysis as a tool for land management |
title_full_unstemmed |
Procrustes analysis as a tool for land management |
title_sort |
Procrustes analysis as a tool for land management |
dc.creator.none.fl_str_mv |
Matteucci, Silvia Diana Pla, Laura |
author |
Matteucci, Silvia Diana |
author_facet |
Matteucci, Silvia Diana Pla, Laura |
author_role |
author |
author2 |
Pla, Laura |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ecologica Indicator Matrix Concordance Space Environmental Policy Land Use |
topic |
Ecologica Indicator Matrix Concordance Space Environmental Policy Land Use |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Generalized Procrustes analysis (GPA) is a multivariate technique that involves transformations of data matrices to provide optimal comparability. We propose GPA to quantify the concordance among sets of variables that characterize natural, human and productive subsystems. When the land use fits in with the physical support of agricultural production, people’s well-being should be evident in a high concordance between the land use and the social conditions. In a situation of instability each set of variables operates in diverse directions resulting in lower resilience and sustainability. Two GPA were performed, between physical support and land use data sets (concordance = 67.4%), and between land use and social conditions data sets (concordance = 65.3%). The interplay between the pair of concordance values constitutes a bi-dimensional index which serves as an ecological indicator. Based on bootstrap confidence interval, the 49 counties of the Pampa Ecoregion, Argentina, were classified in medium, high or low concordance. The lack of concordance is an indicator of imbalances which may contribute to guide environmental management. Fil: Matteucci, Silvia Diana. Universidad de Buenos Aires. Facultad de Arquitectura y Urbanismo. Grupo de Ecología del Paisaje y Medio Ambiente; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Pla, Laura. Universidad Nacional Experimental Francisco de Miranda; Venezuela |
description |
Generalized Procrustes analysis (GPA) is a multivariate technique that involves transformations of data matrices to provide optimal comparability. We propose GPA to quantify the concordance among sets of variables that characterize natural, human and productive subsystems. When the land use fits in with the physical support of agricultural production, people’s well-being should be evident in a high concordance between the land use and the social conditions. In a situation of instability each set of variables operates in diverse directions resulting in lower resilience and sustainability. Two GPA were performed, between physical support and land use data sets (concordance = 67.4%), and between land use and social conditions data sets (concordance = 65.3%). The interplay between the pair of concordance values constitutes a bi-dimensional index which serves as an ecological indicator. Based on bootstrap confidence interval, the 49 counties of the Pampa Ecoregion, Argentina, were classified in medium, high or low concordance. The lack of concordance is an indicator of imbalances which may contribute to guide environmental management. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/16362 Matteucci, Silvia Diana; Pla, Laura; Procrustes analysis as a tool for land management; Elsevier Science; Ecological Indicators; 10; 2; 3-2010; 516-526 1470-160X |
url |
http://hdl.handle.net/11336/16362 |
identifier_str_mv |
Matteucci, Silvia Diana; Pla, Laura; Procrustes analysis as a tool for land management; Elsevier Science; Ecological Indicators; 10; 2; 3-2010; 516-526 1470-160X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecolind.2009.09.005 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1470160X09001538 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613735907328000 |
score |
13.070432 |