Steric Control of the Rate-Limiting Step of UDP-Galactopyranose Mutase
- Autores
- Pierdominici Sottile, Gustavo; Cossio Pérez, Rodrigo; Da Fonseca, Isabel; Kizjakina, Karina; Tanner, John J.; Sobrado, Pablo
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Galactose is an abundant monosaccharide found exclusively in mammals as galactopyranose (Galp), the six-membered ring form of this sugar. In contrast, galactose appears in many pathogenic microorganisms as the five-membered ring form, galactofuranose (Galf). Galf biosynthesis begins with the conversion of UDP-Galp to UDP-Galf catalyzed by the flavoenzyme UDP-galactopyranose mutase (UGM). Because UGM is essential for the survival and proliferation of several pathogens, there is interest in understanding the catalytic mechanism to aid inhibitor development. Herein, we have used kinetic measurements and molecular dynamics simulations to explore the features of UGM that control the rate-limiting step (RLS). We show that UGM from the pathogenic fungus Aspergillus fumigatus also catalyzes the isomerization of UDP-arabinopyranose (UDP-Arap), which differs from UDP-Galp by lacking a -CH 2 -OH substituent at the C5 position of the hexose ring. Unexpectedly, the RLS changed from a chemical step for the natural substrate to product release with UDP-Arap. This result implicated residues that contact the -CH 2 -OH of UDP-Galp in controlling the mechanistic path. The mutation of one of these residues, Trp315, to Ala changed the RLS of the natural substrate to product release, similar to the wild-type enzyme with UDP-Arap. Molecular dynamics simulations suggest that steric complementarity in the Michaelis complex is responsible for this distinct behavior. These results provide new insight into the UGM mechanism and, more generally, how steric factors in the enzyme active site control the free energy barriers along the reaction path.
Fil: Pierdominici Sottile, Gustavo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cossio Pérez, Rodrigo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Da Fonseca, Isabel. Virginia Polytechnic Institute And State University; Estados Unidos
Fil: Kizjakina, Karina. Virginia Polytechnic Institute And State University; Estados Unidos
Fil: Tanner, John J.. University of Missouri; Estados Unidos
Fil: Sobrado, Pablo. Virginia Polytechnic Institute And State University; Estados Unidos - Materia
-
Aspergillus fumigatus
UDP-galactopyranose mutase
Molecular dynamics
UGM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100129
Ver los metadatos del registro completo
id |
CONICETDig_738d8fc14510e572aab2e830b9ac76cd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100129 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Steric Control of the Rate-Limiting Step of UDP-Galactopyranose MutasePierdominici Sottile, GustavoCossio Pérez, RodrigoDa Fonseca, IsabelKizjakina, KarinaTanner, John J.Sobrado, PabloAspergillus fumigatusUDP-galactopyranose mutaseMolecular dynamicsUGMhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Galactose is an abundant monosaccharide found exclusively in mammals as galactopyranose (Galp), the six-membered ring form of this sugar. In contrast, galactose appears in many pathogenic microorganisms as the five-membered ring form, galactofuranose (Galf). Galf biosynthesis begins with the conversion of UDP-Galp to UDP-Galf catalyzed by the flavoenzyme UDP-galactopyranose mutase (UGM). Because UGM is essential for the survival and proliferation of several pathogens, there is interest in understanding the catalytic mechanism to aid inhibitor development. Herein, we have used kinetic measurements and molecular dynamics simulations to explore the features of UGM that control the rate-limiting step (RLS). We show that UGM from the pathogenic fungus Aspergillus fumigatus also catalyzes the isomerization of UDP-arabinopyranose (UDP-Arap), which differs from UDP-Galp by lacking a -CH 2 -OH substituent at the C5 position of the hexose ring. Unexpectedly, the RLS changed from a chemical step for the natural substrate to product release with UDP-Arap. This result implicated residues that contact the -CH 2 -OH of UDP-Galp in controlling the mechanistic path. The mutation of one of these residues, Trp315, to Ala changed the RLS of the natural substrate to product release, similar to the wild-type enzyme with UDP-Arap. Molecular dynamics simulations suggest that steric complementarity in the Michaelis complex is responsible for this distinct behavior. These results provide new insight into the UGM mechanism and, more generally, how steric factors in the enzyme active site control the free energy barriers along the reaction path.Fil: Pierdominici Sottile, Gustavo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cossio Pérez, Rodrigo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Da Fonseca, Isabel. Virginia Polytechnic Institute And State University; Estados UnidosFil: Kizjakina, Karina. Virginia Polytechnic Institute And State University; Estados UnidosFil: Tanner, John J.. University of Missouri; Estados UnidosFil: Sobrado, Pablo. Virginia Polytechnic Institute And State University; Estados UnidosAmerican Chemical Society2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100129Pierdominici Sottile, Gustavo; Cossio Pérez, Rodrigo; Da Fonseca, Isabel; Kizjakina, Karina; Tanner, John J.; et al.; Steric Control of the Rate-Limiting Step of UDP-Galactopyranose Mutase; American Chemical Society; Biochemistry; 57; 26; 7-2018; 3713-37210006-2960CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.biochem.8b00323info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492245/info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.biochem.8b00323info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:28Zoai:ri.conicet.gov.ar:11336/100129instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:28.479CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Steric Control of the Rate-Limiting Step of UDP-Galactopyranose Mutase |
title |
Steric Control of the Rate-Limiting Step of UDP-Galactopyranose Mutase |
spellingShingle |
Steric Control of the Rate-Limiting Step of UDP-Galactopyranose Mutase Pierdominici Sottile, Gustavo Aspergillus fumigatus UDP-galactopyranose mutase Molecular dynamics UGM |
title_short |
Steric Control of the Rate-Limiting Step of UDP-Galactopyranose Mutase |
title_full |
Steric Control of the Rate-Limiting Step of UDP-Galactopyranose Mutase |
title_fullStr |
Steric Control of the Rate-Limiting Step of UDP-Galactopyranose Mutase |
title_full_unstemmed |
Steric Control of the Rate-Limiting Step of UDP-Galactopyranose Mutase |
title_sort |
Steric Control of the Rate-Limiting Step of UDP-Galactopyranose Mutase |
dc.creator.none.fl_str_mv |
Pierdominici Sottile, Gustavo Cossio Pérez, Rodrigo Da Fonseca, Isabel Kizjakina, Karina Tanner, John J. Sobrado, Pablo |
author |
Pierdominici Sottile, Gustavo |
author_facet |
Pierdominici Sottile, Gustavo Cossio Pérez, Rodrigo Da Fonseca, Isabel Kizjakina, Karina Tanner, John J. Sobrado, Pablo |
author_role |
author |
author2 |
Cossio Pérez, Rodrigo Da Fonseca, Isabel Kizjakina, Karina Tanner, John J. Sobrado, Pablo |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Aspergillus fumigatus UDP-galactopyranose mutase Molecular dynamics UGM |
topic |
Aspergillus fumigatus UDP-galactopyranose mutase Molecular dynamics UGM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Galactose is an abundant monosaccharide found exclusively in mammals as galactopyranose (Galp), the six-membered ring form of this sugar. In contrast, galactose appears in many pathogenic microorganisms as the five-membered ring form, galactofuranose (Galf). Galf biosynthesis begins with the conversion of UDP-Galp to UDP-Galf catalyzed by the flavoenzyme UDP-galactopyranose mutase (UGM). Because UGM is essential for the survival and proliferation of several pathogens, there is interest in understanding the catalytic mechanism to aid inhibitor development. Herein, we have used kinetic measurements and molecular dynamics simulations to explore the features of UGM that control the rate-limiting step (RLS). We show that UGM from the pathogenic fungus Aspergillus fumigatus also catalyzes the isomerization of UDP-arabinopyranose (UDP-Arap), which differs from UDP-Galp by lacking a -CH 2 -OH substituent at the C5 position of the hexose ring. Unexpectedly, the RLS changed from a chemical step for the natural substrate to product release with UDP-Arap. This result implicated residues that contact the -CH 2 -OH of UDP-Galp in controlling the mechanistic path. The mutation of one of these residues, Trp315, to Ala changed the RLS of the natural substrate to product release, similar to the wild-type enzyme with UDP-Arap. Molecular dynamics simulations suggest that steric complementarity in the Michaelis complex is responsible for this distinct behavior. These results provide new insight into the UGM mechanism and, more generally, how steric factors in the enzyme active site control the free energy barriers along the reaction path. Fil: Pierdominici Sottile, Gustavo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Cossio Pérez, Rodrigo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Da Fonseca, Isabel. Virginia Polytechnic Institute And State University; Estados Unidos Fil: Kizjakina, Karina. Virginia Polytechnic Institute And State University; Estados Unidos Fil: Tanner, John J.. University of Missouri; Estados Unidos Fil: Sobrado, Pablo. Virginia Polytechnic Institute And State University; Estados Unidos |
description |
Galactose is an abundant monosaccharide found exclusively in mammals as galactopyranose (Galp), the six-membered ring form of this sugar. In contrast, galactose appears in many pathogenic microorganisms as the five-membered ring form, galactofuranose (Galf). Galf biosynthesis begins with the conversion of UDP-Galp to UDP-Galf catalyzed by the flavoenzyme UDP-galactopyranose mutase (UGM). Because UGM is essential for the survival and proliferation of several pathogens, there is interest in understanding the catalytic mechanism to aid inhibitor development. Herein, we have used kinetic measurements and molecular dynamics simulations to explore the features of UGM that control the rate-limiting step (RLS). We show that UGM from the pathogenic fungus Aspergillus fumigatus also catalyzes the isomerization of UDP-arabinopyranose (UDP-Arap), which differs from UDP-Galp by lacking a -CH 2 -OH substituent at the C5 position of the hexose ring. Unexpectedly, the RLS changed from a chemical step for the natural substrate to product release with UDP-Arap. This result implicated residues that contact the -CH 2 -OH of UDP-Galp in controlling the mechanistic path. The mutation of one of these residues, Trp315, to Ala changed the RLS of the natural substrate to product release, similar to the wild-type enzyme with UDP-Arap. Molecular dynamics simulations suggest that steric complementarity in the Michaelis complex is responsible for this distinct behavior. These results provide new insight into the UGM mechanism and, more generally, how steric factors in the enzyme active site control the free energy barriers along the reaction path. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100129 Pierdominici Sottile, Gustavo; Cossio Pérez, Rodrigo; Da Fonseca, Isabel; Kizjakina, Karina; Tanner, John J.; et al.; Steric Control of the Rate-Limiting Step of UDP-Galactopyranose Mutase; American Chemical Society; Biochemistry; 57; 26; 7-2018; 3713-3721 0006-2960 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/100129 |
identifier_str_mv |
Pierdominici Sottile, Gustavo; Cossio Pérez, Rodrigo; Da Fonseca, Isabel; Kizjakina, Karina; Tanner, John J.; et al.; Steric Control of the Rate-Limiting Step of UDP-Galactopyranose Mutase; American Chemical Society; Biochemistry; 57; 26; 7-2018; 3713-3721 0006-2960 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.biochem.8b00323 info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6492245/ info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.biochem.8b00323 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613425909465088 |
score |
13.070432 |