Protracted Thermal Evolution of a Migmatitic Terrane as Revealed by Multiple Geochronometers From the Retro-Arc of the Early Paleozoic Famatinian Orogen in NW Argentina

Autores
Farias, Pablo; Weinberg, Roberto F.; Sola, Alfonso Manuel; Finch, Melanie
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
U-Pb dates of zircon, monazite, and titanite combined with trace element composition, allows characterization of the thermal evolution of the migmatitic Agua del Sapo complex. This complex comprises Al-rich and Ca-rich metasedimentary rocks with a detrital zircon maximum depositional age of 550 Ma. The rocks record two consecutive early Paleozoic orogenies. During subduction associated with the 550–510 Ma Pampean orogeny, the complex was in the fore-arc region and was intruded by 550–520 Ma granites indicative of anomalous heating possibly related to ridge subduction. During the subsequent 500–440 Ma Famatinian orogeny, the arc migrated trenchwards and the region became part of a retro-arc that underwent melting at upper-amphibolite facies. This event was recorded differently by each of the accessory phases. Detrital zircon cores were overgrown by rare Famatinian rims that range from 500 to 420 Ma, while monazite records only Famatinian dates with a growth peak at ∼457 Ma that extends to 410 Ma, possibly due to coupled dissolution-precipitation. Published titanite dates define a 120 Myr thermal history, starting at ∼500 Ma with temperatures of ∼750°C ± 25°C, ending at 380 Ma and ∼700°C ± 25°C. Cooling was accompanied by a decrease in titanite light rare earth element contents in response to increased abundance of allanite/epidote. Thus, the complementary time-compositional record of the accessory phases reveals continued high heat flow, associated with deformation, to 380 Ma. This prolonged event blurs the boundary between the Famatinian and the subsequent Achalian/Chanic orogenies and extends the Silurian Rinconada tectonic phase of the Famatinian orogeny to the east into the Eastern Sierras Pampeanas.
Fil: Farias, Pablo. Monash University; Australia
Fil: Weinberg, Roberto F.. Monash University; Australia
Fil: Sola, Alfonso Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina
Fil: Finch, Melanie. Monash University; Australia
Materia
Famatinian Orogen
Retro-Arc
NW Argentina
Multiple Geochronometers
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/230266

id CONICETDig_735228b3faba7ed61598bc5a67d06f21
oai_identifier_str oai:ri.conicet.gov.ar:11336/230266
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Protracted Thermal Evolution of a Migmatitic Terrane as Revealed by Multiple Geochronometers From the Retro-Arc of the Early Paleozoic Famatinian Orogen in NW ArgentinaFarias, PabloWeinberg, Roberto F.Sola, Alfonso ManuelFinch, MelanieFamatinian OrogenRetro-ArcNW ArgentinaMultiple Geochronometershttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1U-Pb dates of zircon, monazite, and titanite combined with trace element composition, allows characterization of the thermal evolution of the migmatitic Agua del Sapo complex. This complex comprises Al-rich and Ca-rich metasedimentary rocks with a detrital zircon maximum depositional age of 550 Ma. The rocks record two consecutive early Paleozoic orogenies. During subduction associated with the 550–510 Ma Pampean orogeny, the complex was in the fore-arc region and was intruded by 550–520 Ma granites indicative of anomalous heating possibly related to ridge subduction. During the subsequent 500–440 Ma Famatinian orogeny, the arc migrated trenchwards and the region became part of a retro-arc that underwent melting at upper-amphibolite facies. This event was recorded differently by each of the accessory phases. Detrital zircon cores were overgrown by rare Famatinian rims that range from 500 to 420 Ma, while monazite records only Famatinian dates with a growth peak at ∼457 Ma that extends to 410 Ma, possibly due to coupled dissolution-precipitation. Published titanite dates define a 120 Myr thermal history, starting at ∼500 Ma with temperatures of ∼750°C ± 25°C, ending at 380 Ma and ∼700°C ± 25°C. Cooling was accompanied by a decrease in titanite light rare earth element contents in response to increased abundance of allanite/epidote. Thus, the complementary time-compositional record of the accessory phases reveals continued high heat flow, associated with deformation, to 380 Ma. This prolonged event blurs the boundary between the Famatinian and the subsequent Achalian/Chanic orogenies and extends the Silurian Rinconada tectonic phase of the Famatinian orogeny to the east into the Eastern Sierras Pampeanas.Fil: Farias, Pablo. Monash University; AustraliaFil: Weinberg, Roberto F.. Monash University; AustraliaFil: Sola, Alfonso Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; ArgentinaFil: Finch, Melanie. Monash University; AustraliaAmerican Geophysical Union2023-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/230266Farias, Pablo; Weinberg, Roberto F.; Sola, Alfonso Manuel; Finch, Melanie; Protracted Thermal Evolution of a Migmatitic Terrane as Revealed by Multiple Geochronometers From the Retro-Arc of the Early Paleozoic Famatinian Orogen in NW Argentina; American Geophysical Union; Tectonics; 42; 3; 3-2023; 1-310278-74071944-9194CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021TC007027info:eu-repo/semantics/altIdentifier/doi/10.1029/2021TC007027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:39:22Zoai:ri.conicet.gov.ar:11336/230266instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:39:22.641CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Protracted Thermal Evolution of a Migmatitic Terrane as Revealed by Multiple Geochronometers From the Retro-Arc of the Early Paleozoic Famatinian Orogen in NW Argentina
title Protracted Thermal Evolution of a Migmatitic Terrane as Revealed by Multiple Geochronometers From the Retro-Arc of the Early Paleozoic Famatinian Orogen in NW Argentina
spellingShingle Protracted Thermal Evolution of a Migmatitic Terrane as Revealed by Multiple Geochronometers From the Retro-Arc of the Early Paleozoic Famatinian Orogen in NW Argentina
Farias, Pablo
Famatinian Orogen
Retro-Arc
NW Argentina
Multiple Geochronometers
title_short Protracted Thermal Evolution of a Migmatitic Terrane as Revealed by Multiple Geochronometers From the Retro-Arc of the Early Paleozoic Famatinian Orogen in NW Argentina
title_full Protracted Thermal Evolution of a Migmatitic Terrane as Revealed by Multiple Geochronometers From the Retro-Arc of the Early Paleozoic Famatinian Orogen in NW Argentina
title_fullStr Protracted Thermal Evolution of a Migmatitic Terrane as Revealed by Multiple Geochronometers From the Retro-Arc of the Early Paleozoic Famatinian Orogen in NW Argentina
title_full_unstemmed Protracted Thermal Evolution of a Migmatitic Terrane as Revealed by Multiple Geochronometers From the Retro-Arc of the Early Paleozoic Famatinian Orogen in NW Argentina
title_sort Protracted Thermal Evolution of a Migmatitic Terrane as Revealed by Multiple Geochronometers From the Retro-Arc of the Early Paleozoic Famatinian Orogen in NW Argentina
dc.creator.none.fl_str_mv Farias, Pablo
Weinberg, Roberto F.
Sola, Alfonso Manuel
Finch, Melanie
author Farias, Pablo
author_facet Farias, Pablo
Weinberg, Roberto F.
Sola, Alfonso Manuel
Finch, Melanie
author_role author
author2 Weinberg, Roberto F.
Sola, Alfonso Manuel
Finch, Melanie
author2_role author
author
author
dc.subject.none.fl_str_mv Famatinian Orogen
Retro-Arc
NW Argentina
Multiple Geochronometers
topic Famatinian Orogen
Retro-Arc
NW Argentina
Multiple Geochronometers
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv U-Pb dates of zircon, monazite, and titanite combined with trace element composition, allows characterization of the thermal evolution of the migmatitic Agua del Sapo complex. This complex comprises Al-rich and Ca-rich metasedimentary rocks with a detrital zircon maximum depositional age of 550 Ma. The rocks record two consecutive early Paleozoic orogenies. During subduction associated with the 550–510 Ma Pampean orogeny, the complex was in the fore-arc region and was intruded by 550–520 Ma granites indicative of anomalous heating possibly related to ridge subduction. During the subsequent 500–440 Ma Famatinian orogeny, the arc migrated trenchwards and the region became part of a retro-arc that underwent melting at upper-amphibolite facies. This event was recorded differently by each of the accessory phases. Detrital zircon cores were overgrown by rare Famatinian rims that range from 500 to 420 Ma, while monazite records only Famatinian dates with a growth peak at ∼457 Ma that extends to 410 Ma, possibly due to coupled dissolution-precipitation. Published titanite dates define a 120 Myr thermal history, starting at ∼500 Ma with temperatures of ∼750°C ± 25°C, ending at 380 Ma and ∼700°C ± 25°C. Cooling was accompanied by a decrease in titanite light rare earth element contents in response to increased abundance of allanite/epidote. Thus, the complementary time-compositional record of the accessory phases reveals continued high heat flow, associated with deformation, to 380 Ma. This prolonged event blurs the boundary between the Famatinian and the subsequent Achalian/Chanic orogenies and extends the Silurian Rinconada tectonic phase of the Famatinian orogeny to the east into the Eastern Sierras Pampeanas.
Fil: Farias, Pablo. Monash University; Australia
Fil: Weinberg, Roberto F.. Monash University; Australia
Fil: Sola, Alfonso Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Bio y Geociencias del NOA. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Museo de Ciencias Naturales. Instituto de Bio y Geociencias del NOA; Argentina
Fil: Finch, Melanie. Monash University; Australia
description U-Pb dates of zircon, monazite, and titanite combined with trace element composition, allows characterization of the thermal evolution of the migmatitic Agua del Sapo complex. This complex comprises Al-rich and Ca-rich metasedimentary rocks with a detrital zircon maximum depositional age of 550 Ma. The rocks record two consecutive early Paleozoic orogenies. During subduction associated with the 550–510 Ma Pampean orogeny, the complex was in the fore-arc region and was intruded by 550–520 Ma granites indicative of anomalous heating possibly related to ridge subduction. During the subsequent 500–440 Ma Famatinian orogeny, the arc migrated trenchwards and the region became part of a retro-arc that underwent melting at upper-amphibolite facies. This event was recorded differently by each of the accessory phases. Detrital zircon cores were overgrown by rare Famatinian rims that range from 500 to 420 Ma, while monazite records only Famatinian dates with a growth peak at ∼457 Ma that extends to 410 Ma, possibly due to coupled dissolution-precipitation. Published titanite dates define a 120 Myr thermal history, starting at ∼500 Ma with temperatures of ∼750°C ± 25°C, ending at 380 Ma and ∼700°C ± 25°C. Cooling was accompanied by a decrease in titanite light rare earth element contents in response to increased abundance of allanite/epidote. Thus, the complementary time-compositional record of the accessory phases reveals continued high heat flow, associated with deformation, to 380 Ma. This prolonged event blurs the boundary between the Famatinian and the subsequent Achalian/Chanic orogenies and extends the Silurian Rinconada tectonic phase of the Famatinian orogeny to the east into the Eastern Sierras Pampeanas.
publishDate 2023
dc.date.none.fl_str_mv 2023-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/230266
Farias, Pablo; Weinberg, Roberto F.; Sola, Alfonso Manuel; Finch, Melanie; Protracted Thermal Evolution of a Migmatitic Terrane as Revealed by Multiple Geochronometers From the Retro-Arc of the Early Paleozoic Famatinian Orogen in NW Argentina; American Geophysical Union; Tectonics; 42; 3; 3-2023; 1-31
0278-7407
1944-9194
CONICET Digital
CONICET
url http://hdl.handle.net/11336/230266
identifier_str_mv Farias, Pablo; Weinberg, Roberto F.; Sola, Alfonso Manuel; Finch, Melanie; Protracted Thermal Evolution of a Migmatitic Terrane as Revealed by Multiple Geochronometers From the Retro-Arc of the Early Paleozoic Famatinian Orogen in NW Argentina; American Geophysical Union; Tectonics; 42; 3; 3-2023; 1-31
0278-7407
1944-9194
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021TC007027
info:eu-repo/semantics/altIdentifier/doi/10.1029/2021TC007027
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Geophysical Union
publisher.none.fl_str_mv American Geophysical Union
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083510237921280
score 13.22299