Comparing short and long-distance dispersal: modelling and field case studies

Autores
Marco, Diana Elizabeth; Montemurro, Marcelo Alejandro; Cannas, Sergio Alejandro
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Dispersal is a factor of great importance in determining a species spatial distribution. Short distance dispersal (SDD) and long distance dispersal (LDD) strategies yield very different spatial distributions. In this paper we compare spatial spread patterns from SDD and LDD simulations, contrast them with patterns from field data, and assess the significance of biological and population traits. Simulated SDD spread using an exponential function generates a single circular patch with a well-defined invasion front showing a travelling-wave structure. The invasive spread is relatively slow as it is restricted to reproductive individuals occupying the outer zone of the circular patch. As a consequence of this dispersal dynamics, spread is slower than spread generated by LDD. In contrast, the early and fast invasion of the entire habitat mediated by power law LDD not only involves a significantly greater invasion velocity, but also an entirely different habitat occupation. As newly dispersed individuals soon reach very distant portions of the habitat as well as the vicinity of the original dispersal focus, new growing patches are generated while the main patch increases its own growth absorbing the closest patches. As a consequence of both dispersal and lower density dependence, growth of the occupied area is much faster than with SDD. SDD and LDD also differ regarding pattern generation. With SDD, fractal patterns appear only in the border of the invasion front in SDD when competitive interaction with residents is included. In contrast, LDD patterns show fractality both in the spatial arrangements of patches as well as in patch borders. Moreover, values of border fractal dimension inform on the dispersal process in relation with habitat heterogeneity. The distribution of patch size is also scale-free, showing two power laws characteristic of small and large patch sizes directly arising from the dispersal and reproductive dynamics. Ecological factors like habitat heterogeneity are relevant for dispersal, although its importance is greater for SDD, lowering the invasion velocity. Among the life history traits considered, adult mortality, the juvenile bank and mean dispersal distance are the most relevant for SDD. For LDD, habitat heterogeneity and changes in life history traits are not so relevant, causing minor changes in the values of the scale-free parameters. Our work on short and long distance dispersal shows novel theoretical differences between SDD and LDD in invasive systems (mechanisms of pattern formation, fractal and scaling properties, relevance of different life history traits and habitat variables) that correspond closely with field examples and were not analyzed, at least in this degree of detail, by the previously existing models.
Fil: Marco, Diana Elizabeth. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Area de Producción Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Montemurro, Marcelo Alejandro. University of Manchester; Reino Unido
Fil: Cannas, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Materia
MATHEMATICAL ECOLOGY
BIOLOGICAL INVASIONS
Long distance dispersal
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/278213

id CONICETDig_72c8724c4b2c3b205859ea56d9af6864
oai_identifier_str oai:ri.conicet.gov.ar:11336/278213
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Comparing short and long-distance dispersal: modelling and field case studiesMarco, Diana ElizabethMontemurro, Marcelo AlejandroCannas, Sergio AlejandroMATHEMATICAL ECOLOGYBIOLOGICAL INVASIONSLong distance dispersalhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Dispersal is a factor of great importance in determining a species spatial distribution. Short distance dispersal (SDD) and long distance dispersal (LDD) strategies yield very different spatial distributions. In this paper we compare spatial spread patterns from SDD and LDD simulations, contrast them with patterns from field data, and assess the significance of biological and population traits. Simulated SDD spread using an exponential function generates a single circular patch with a well-defined invasion front showing a travelling-wave structure. The invasive spread is relatively slow as it is restricted to reproductive individuals occupying the outer zone of the circular patch. As a consequence of this dispersal dynamics, spread is slower than spread generated by LDD. In contrast, the early and fast invasion of the entire habitat mediated by power law LDD not only involves a significantly greater invasion velocity, but also an entirely different habitat occupation. As newly dispersed individuals soon reach very distant portions of the habitat as well as the vicinity of the original dispersal focus, new growing patches are generated while the main patch increases its own growth absorbing the closest patches. As a consequence of both dispersal and lower density dependence, growth of the occupied area is much faster than with SDD. SDD and LDD also differ regarding pattern generation. With SDD, fractal patterns appear only in the border of the invasion front in SDD when competitive interaction with residents is included. In contrast, LDD patterns show fractality both in the spatial arrangements of patches as well as in patch borders. Moreover, values of border fractal dimension inform on the dispersal process in relation with habitat heterogeneity. The distribution of patch size is also scale-free, showing two power laws characteristic of small and large patch sizes directly arising from the dispersal and reproductive dynamics. Ecological factors like habitat heterogeneity are relevant for dispersal, although its importance is greater for SDD, lowering the invasion velocity. Among the life history traits considered, adult mortality, the juvenile bank and mean dispersal distance are the most relevant for SDD. For LDD, habitat heterogeneity and changes in life history traits are not so relevant, causing minor changes in the values of the scale-free parameters. Our work on short and long distance dispersal shows novel theoretical differences between SDD and LDD in invasive systems (mechanisms of pattern formation, fractal and scaling properties, relevance of different life history traits and habitat variables) that correspond closely with field examples and were not analyzed, at least in this degree of detail, by the previously existing models.Fil: Marco, Diana Elizabeth. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Area de Producción Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Montemurro, Marcelo Alejandro. University of Manchester; Reino UnidoFil: Cannas, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaWiley Blackwell Publishing, Inc2011-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/278213Marco, Diana Elizabeth; Montemurro, Marcelo Alejandro; Cannas, Sergio Alejandro; Comparing short and long-distance dispersal: modelling and field case studies; Wiley Blackwell Publishing, Inc; Ecography; 34; 4; 9-2011; 671-6820906-7590CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://nsojournals.onlinelibrary.wiley.com/doi/10.1111/j.1600-0587.2010.06477.xinfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1600-0587.2010.06477.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:53:40Zoai:ri.conicet.gov.ar:11336/278213instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:53:40.65CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Comparing short and long-distance dispersal: modelling and field case studies
title Comparing short and long-distance dispersal: modelling and field case studies
spellingShingle Comparing short and long-distance dispersal: modelling and field case studies
Marco, Diana Elizabeth
MATHEMATICAL ECOLOGY
BIOLOGICAL INVASIONS
Long distance dispersal
title_short Comparing short and long-distance dispersal: modelling and field case studies
title_full Comparing short and long-distance dispersal: modelling and field case studies
title_fullStr Comparing short and long-distance dispersal: modelling and field case studies
title_full_unstemmed Comparing short and long-distance dispersal: modelling and field case studies
title_sort Comparing short and long-distance dispersal: modelling and field case studies
dc.creator.none.fl_str_mv Marco, Diana Elizabeth
Montemurro, Marcelo Alejandro
Cannas, Sergio Alejandro
author Marco, Diana Elizabeth
author_facet Marco, Diana Elizabeth
Montemurro, Marcelo Alejandro
Cannas, Sergio Alejandro
author_role author
author2 Montemurro, Marcelo Alejandro
Cannas, Sergio Alejandro
author2_role author
author
dc.subject.none.fl_str_mv MATHEMATICAL ECOLOGY
BIOLOGICAL INVASIONS
Long distance dispersal
topic MATHEMATICAL ECOLOGY
BIOLOGICAL INVASIONS
Long distance dispersal
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Dispersal is a factor of great importance in determining a species spatial distribution. Short distance dispersal (SDD) and long distance dispersal (LDD) strategies yield very different spatial distributions. In this paper we compare spatial spread patterns from SDD and LDD simulations, contrast them with patterns from field data, and assess the significance of biological and population traits. Simulated SDD spread using an exponential function generates a single circular patch with a well-defined invasion front showing a travelling-wave structure. The invasive spread is relatively slow as it is restricted to reproductive individuals occupying the outer zone of the circular patch. As a consequence of this dispersal dynamics, spread is slower than spread generated by LDD. In contrast, the early and fast invasion of the entire habitat mediated by power law LDD not only involves a significantly greater invasion velocity, but also an entirely different habitat occupation. As newly dispersed individuals soon reach very distant portions of the habitat as well as the vicinity of the original dispersal focus, new growing patches are generated while the main patch increases its own growth absorbing the closest patches. As a consequence of both dispersal and lower density dependence, growth of the occupied area is much faster than with SDD. SDD and LDD also differ regarding pattern generation. With SDD, fractal patterns appear only in the border of the invasion front in SDD when competitive interaction with residents is included. In contrast, LDD patterns show fractality both in the spatial arrangements of patches as well as in patch borders. Moreover, values of border fractal dimension inform on the dispersal process in relation with habitat heterogeneity. The distribution of patch size is also scale-free, showing two power laws characteristic of small and large patch sizes directly arising from the dispersal and reproductive dynamics. Ecological factors like habitat heterogeneity are relevant for dispersal, although its importance is greater for SDD, lowering the invasion velocity. Among the life history traits considered, adult mortality, the juvenile bank and mean dispersal distance are the most relevant for SDD. For LDD, habitat heterogeneity and changes in life history traits are not so relevant, causing minor changes in the values of the scale-free parameters. Our work on short and long distance dispersal shows novel theoretical differences between SDD and LDD in invasive systems (mechanisms of pattern formation, fractal and scaling properties, relevance of different life history traits and habitat variables) that correspond closely with field examples and were not analyzed, at least in this degree of detail, by the previously existing models.
Fil: Marco, Diana Elizabeth. Universidad Nacional de Córdoba. Facultad de Ciencias Agropecuarias. Area de Producción Orgánica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Montemurro, Marcelo Alejandro. University of Manchester; Reino Unido
Fil: Cannas, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
description Dispersal is a factor of great importance in determining a species spatial distribution. Short distance dispersal (SDD) and long distance dispersal (LDD) strategies yield very different spatial distributions. In this paper we compare spatial spread patterns from SDD and LDD simulations, contrast them with patterns from field data, and assess the significance of biological and population traits. Simulated SDD spread using an exponential function generates a single circular patch with a well-defined invasion front showing a travelling-wave structure. The invasive spread is relatively slow as it is restricted to reproductive individuals occupying the outer zone of the circular patch. As a consequence of this dispersal dynamics, spread is slower than spread generated by LDD. In contrast, the early and fast invasion of the entire habitat mediated by power law LDD not only involves a significantly greater invasion velocity, but also an entirely different habitat occupation. As newly dispersed individuals soon reach very distant portions of the habitat as well as the vicinity of the original dispersal focus, new growing patches are generated while the main patch increases its own growth absorbing the closest patches. As a consequence of both dispersal and lower density dependence, growth of the occupied area is much faster than with SDD. SDD and LDD also differ regarding pattern generation. With SDD, fractal patterns appear only in the border of the invasion front in SDD when competitive interaction with residents is included. In contrast, LDD patterns show fractality both in the spatial arrangements of patches as well as in patch borders. Moreover, values of border fractal dimension inform on the dispersal process in relation with habitat heterogeneity. The distribution of patch size is also scale-free, showing two power laws characteristic of small and large patch sizes directly arising from the dispersal and reproductive dynamics. Ecological factors like habitat heterogeneity are relevant for dispersal, although its importance is greater for SDD, lowering the invasion velocity. Among the life history traits considered, adult mortality, the juvenile bank and mean dispersal distance are the most relevant for SDD. For LDD, habitat heterogeneity and changes in life history traits are not so relevant, causing minor changes in the values of the scale-free parameters. Our work on short and long distance dispersal shows novel theoretical differences between SDD and LDD in invasive systems (mechanisms of pattern formation, fractal and scaling properties, relevance of different life history traits and habitat variables) that correspond closely with field examples and were not analyzed, at least in this degree of detail, by the previously existing models.
publishDate 2011
dc.date.none.fl_str_mv 2011-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/278213
Marco, Diana Elizabeth; Montemurro, Marcelo Alejandro; Cannas, Sergio Alejandro; Comparing short and long-distance dispersal: modelling and field case studies; Wiley Blackwell Publishing, Inc; Ecography; 34; 4; 9-2011; 671-682
0906-7590
CONICET Digital
CONICET
url http://hdl.handle.net/11336/278213
identifier_str_mv Marco, Diana Elizabeth; Montemurro, Marcelo Alejandro; Cannas, Sergio Alejandro; Comparing short and long-distance dispersal: modelling and field case studies; Wiley Blackwell Publishing, Inc; Ecography; 34; 4; 9-2011; 671-682
0906-7590
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://nsojournals.onlinelibrary.wiley.com/doi/10.1111/j.1600-0587.2010.06477.x
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1600-0587.2010.06477.x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852335847336050688
score 12.952241