Anisotropy-driven topological quantum phase transition in magnetic impurities
- Autores
- Blesio, Germán Gabriel; Manuel, Luis Oscar; Aligia, Armando Angel
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A few years ago, a topological quantum phase transition (TQPT) has been found in Anderson andKondo 2-channel spin-1 impurity models that include a hard-axis anisotropy term DS2 z with D > 0.The most remarkable manifestation of the TQPT is a jump in the spectral density of localizedelectrons, at the Fermi level, from very high to very low values as D is increased. If the twoconduction channels are equivalent, the transition takes place at the critical anisotropyDc ∼ 2.5 TK, where TK is the Kondo temperature for D = 0. This jump might be important todevelop a molecular transistor. The jump is due to a corresponding one in the Luttinger integral,which has a topological non-trivial value π/2 for D > Dc . Here, we review the main results for thespectral density and highlight the significance of the theory for the interpretation of measurementsconducted on magnetic atoms or molecules on metallic surfaces. In these experiments, where D isheld constant, the energy scale TK is manipulated by some parameters. The resulting variation givesrise to a differential conductance dI/dV, measured by scanning-tunneling spectroscopy, which isconsistent with a TQPT at an intermediate value of TK. For non-equivalent channels and non-zeromagnetic field, the topological phase is lost but still a peculiar behaviour in the spectral density isobtained which agrees with experimental observations. We also show that the theory can beextended to integer spin S > 1 and two-impurity systems. This is also probably true for half-integerspin and non-equivalent channels in some cases.
Fil: Blesio, Germán Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Manuel, Luis Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Aligia, Armando Angel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina - Materia
-
KONDO EFFECT
TOPOLOGICAL PHASE TRANSITION
MAGNETIC ANISOTROPY
NANOSCOPIC SYSTEMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/263274
Ver los metadatos del registro completo
id |
CONICETDig_72a7fe2e5666d4ca02be41c0398fb52f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/263274 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Anisotropy-driven topological quantum phase transition in magnetic impuritiesBlesio, Germán GabrielManuel, Luis OscarAligia, Armando AngelKONDO EFFECTTOPOLOGICAL PHASE TRANSITIONMAGNETIC ANISOTROPYNANOSCOPIC SYSTEMShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A few years ago, a topological quantum phase transition (TQPT) has been found in Anderson andKondo 2-channel spin-1 impurity models that include a hard-axis anisotropy term DS2 z with D > 0.The most remarkable manifestation of the TQPT is a jump in the spectral density of localizedelectrons, at the Fermi level, from very high to very low values as D is increased. If the twoconduction channels are equivalent, the transition takes place at the critical anisotropyDc ∼ 2.5 TK, where TK is the Kondo temperature for D = 0. This jump might be important todevelop a molecular transistor. The jump is due to a corresponding one in the Luttinger integral,which has a topological non-trivial value π/2 for D > Dc . Here, we review the main results for thespectral density and highlight the significance of the theory for the interpretation of measurementsconducted on magnetic atoms or molecules on metallic surfaces. In these experiments, where D isheld constant, the energy scale TK is manipulated by some parameters. The resulting variation givesrise to a differential conductance dI/dV, measured by scanning-tunneling spectroscopy, which isconsistent with a TQPT at an intermediate value of TK. For non-equivalent channels and non-zeromagnetic field, the topological phase is lost but still a peculiar behaviour in the spectral density isobtained which agrees with experimental observations. We also show that the theory can beextended to integer spin S > 1 and two-impurity systems. This is also probably true for half-integerspin and non-equivalent channels in some cases.Fil: Blesio, Germán Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Manuel, Luis Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Aligia, Armando Angel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaIOP Publishing2024-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/263274Blesio, Germán Gabriel; Manuel, Luis Oscar; Aligia, Armando Angel; Anisotropy-driven topological quantum phase transition in magnetic impurities; IOP Publishing; Materials for Quantum Technology; 4; 4; 12-2024; 1-202633-4356CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2633-4356/ada081info:eu-repo/semantics/altIdentifier/doi/10.1088/2633-4356/ada081info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:02:38Zoai:ri.conicet.gov.ar:11336/263274instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:02:39.085CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Anisotropy-driven topological quantum phase transition in magnetic impurities |
title |
Anisotropy-driven topological quantum phase transition in magnetic impurities |
spellingShingle |
Anisotropy-driven topological quantum phase transition in magnetic impurities Blesio, Germán Gabriel KONDO EFFECT TOPOLOGICAL PHASE TRANSITION MAGNETIC ANISOTROPY NANOSCOPIC SYSTEMS |
title_short |
Anisotropy-driven topological quantum phase transition in magnetic impurities |
title_full |
Anisotropy-driven topological quantum phase transition in magnetic impurities |
title_fullStr |
Anisotropy-driven topological quantum phase transition in magnetic impurities |
title_full_unstemmed |
Anisotropy-driven topological quantum phase transition in magnetic impurities |
title_sort |
Anisotropy-driven topological quantum phase transition in magnetic impurities |
dc.creator.none.fl_str_mv |
Blesio, Germán Gabriel Manuel, Luis Oscar Aligia, Armando Angel |
author |
Blesio, Germán Gabriel |
author_facet |
Blesio, Germán Gabriel Manuel, Luis Oscar Aligia, Armando Angel |
author_role |
author |
author2 |
Manuel, Luis Oscar Aligia, Armando Angel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
KONDO EFFECT TOPOLOGICAL PHASE TRANSITION MAGNETIC ANISOTROPY NANOSCOPIC SYSTEMS |
topic |
KONDO EFFECT TOPOLOGICAL PHASE TRANSITION MAGNETIC ANISOTROPY NANOSCOPIC SYSTEMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A few years ago, a topological quantum phase transition (TQPT) has been found in Anderson andKondo 2-channel spin-1 impurity models that include a hard-axis anisotropy term DS2 z with D > 0.The most remarkable manifestation of the TQPT is a jump in the spectral density of localizedelectrons, at the Fermi level, from very high to very low values as D is increased. If the twoconduction channels are equivalent, the transition takes place at the critical anisotropyDc ∼ 2.5 TK, where TK is the Kondo temperature for D = 0. This jump might be important todevelop a molecular transistor. The jump is due to a corresponding one in the Luttinger integral,which has a topological non-trivial value π/2 for D > Dc . Here, we review the main results for thespectral density and highlight the significance of the theory for the interpretation of measurementsconducted on magnetic atoms or molecules on metallic surfaces. In these experiments, where D isheld constant, the energy scale TK is manipulated by some parameters. The resulting variation givesrise to a differential conductance dI/dV, measured by scanning-tunneling spectroscopy, which isconsistent with a TQPT at an intermediate value of TK. For non-equivalent channels and non-zeromagnetic field, the topological phase is lost but still a peculiar behaviour in the spectral density isobtained which agrees with experimental observations. We also show that the theory can beextended to integer spin S > 1 and two-impurity systems. This is also probably true for half-integerspin and non-equivalent channels in some cases. Fil: Blesio, Germán Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina Fil: Manuel, Luis Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina Fil: Aligia, Armando Angel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina |
description |
A few years ago, a topological quantum phase transition (TQPT) has been found in Anderson andKondo 2-channel spin-1 impurity models that include a hard-axis anisotropy term DS2 z with D > 0.The most remarkable manifestation of the TQPT is a jump in the spectral density of localizedelectrons, at the Fermi level, from very high to very low values as D is increased. If the twoconduction channels are equivalent, the transition takes place at the critical anisotropyDc ∼ 2.5 TK, where TK is the Kondo temperature for D = 0. This jump might be important todevelop a molecular transistor. The jump is due to a corresponding one in the Luttinger integral,which has a topological non-trivial value π/2 for D > Dc . Here, we review the main results for thespectral density and highlight the significance of the theory for the interpretation of measurementsconducted on magnetic atoms or molecules on metallic surfaces. In these experiments, where D isheld constant, the energy scale TK is manipulated by some parameters. The resulting variation givesrise to a differential conductance dI/dV, measured by scanning-tunneling spectroscopy, which isconsistent with a TQPT at an intermediate value of TK. For non-equivalent channels and non-zeromagnetic field, the topological phase is lost but still a peculiar behaviour in the spectral density isobtained which agrees with experimental observations. We also show that the theory can beextended to integer spin S > 1 and two-impurity systems. This is also probably true for half-integerspin and non-equivalent channels in some cases. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/263274 Blesio, Germán Gabriel; Manuel, Luis Oscar; Aligia, Armando Angel; Anisotropy-driven topological quantum phase transition in magnetic impurities; IOP Publishing; Materials for Quantum Technology; 4; 4; 12-2024; 1-20 2633-4356 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/263274 |
identifier_str_mv |
Blesio, Germán Gabriel; Manuel, Luis Oscar; Aligia, Armando Angel; Anisotropy-driven topological quantum phase transition in magnetic impurities; IOP Publishing; Materials for Quantum Technology; 4; 4; 12-2024; 1-20 2633-4356 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2633-4356/ada081 info:eu-repo/semantics/altIdentifier/doi/10.1088/2633-4356/ada081 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980030403051520 |
score |
12.993085 |