Risk assessment algorithm for power transformer fleets based on condition and strategic importance
- Autores
- Zaldivar Sanchez, Diego Armando; Romero Quete, Andrés Arturo; Rivera, Sergio R.
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In every electric power system, power transformers (PT) play a critical role. Under ideal circumstances, PT should receive the utmost care to maintain the highest operative condition during their lifetime. Through the years, different approaches have been developed to assess the condition and the inherent risk during the operation of PT. However, most proposed methodologies tend to analyze PT as individuals and not as a fleet. A fleet assessment helps the asset manager make sound decisions regarding the maintenance scheduling for groups of PT with similar conditions. This paper proposes a new methodology to assess the risk of PT fleets, considering the technical condition and the strategic importance of the units. First, the state of the units was evaluated using a health index (HI) with a fuzzy logic algorithm. Then, the strategic importance of each unit was assessed using a weighting technique to obtain the importance index (II). Finally, the analyzed units with similar HI and II were arranged into a set of clusters using the k-means clustering technique. A fleet of 19 PTs was used to validate the proposed method. The obtained results are also provided to demonstrate the viability and feasibility of the assessment model.
Fil: Zaldivar Sanchez, Diego Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Romero Quete, Andrés Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
Fil: Rivera, Sergio R.. Universidad Nacional de Colombia; Colombia - Materia
-
risk assessment
health index
power transformers
fuzzy logic
importance index - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/179031
Ver los metadatos del registro completo
id |
CONICETDig_722ad506b104139a130eef6b3d8e99c7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/179031 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Risk assessment algorithm for power transformer fleets based on condition and strategic importanceZaldivar Sanchez, Diego ArmandoRomero Quete, Andrés ArturoRivera, Sergio R.risk assessmenthealth indexpower transformersfuzzy logicimportance indexhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In every electric power system, power transformers (PT) play a critical role. Under ideal circumstances, PT should receive the utmost care to maintain the highest operative condition during their lifetime. Through the years, different approaches have been developed to assess the condition and the inherent risk during the operation of PT. However, most proposed methodologies tend to analyze PT as individuals and not as a fleet. A fleet assessment helps the asset manager make sound decisions regarding the maintenance scheduling for groups of PT with similar conditions. This paper proposes a new methodology to assess the risk of PT fleets, considering the technical condition and the strategic importance of the units. First, the state of the units was evaluated using a health index (HI) with a fuzzy logic algorithm. Then, the strategic importance of each unit was assessed using a weighting technique to obtain the importance index (II). Finally, the analyzed units with similar HI and II were arranged into a set of clusters using the k-means clustering technique. A fleet of 19 PTs was used to validate the proposed method. The obtained results are also provided to demonstrate the viability and feasibility of the assessment model.Fil: Zaldivar Sanchez, Diego Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Romero Quete, Andrés Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; ArgentinaFil: Rivera, Sergio R.. Universidad Nacional de Colombia; ColombiaMultidisciplinary Digital Publishing Institute2021-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/179031Zaldivar Sanchez, Diego Armando; Romero Quete, Andrés Arturo; Rivera, Sergio R.; Risk assessment algorithm for power transformer fleets based on condition and strategic importance; Multidisciplinary Digital Publishing Institute; Algorithms; 14; 11; 10-2021; 1-131999-4893CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1999-4893/14/11/319info:eu-repo/semantics/altIdentifier/doi/10.3390/a14110319info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:54Zoai:ri.conicet.gov.ar:11336/179031instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:55.121CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Risk assessment algorithm for power transformer fleets based on condition and strategic importance |
title |
Risk assessment algorithm for power transformer fleets based on condition and strategic importance |
spellingShingle |
Risk assessment algorithm for power transformer fleets based on condition and strategic importance Zaldivar Sanchez, Diego Armando risk assessment health index power transformers fuzzy logic importance index |
title_short |
Risk assessment algorithm for power transformer fleets based on condition and strategic importance |
title_full |
Risk assessment algorithm for power transformer fleets based on condition and strategic importance |
title_fullStr |
Risk assessment algorithm for power transformer fleets based on condition and strategic importance |
title_full_unstemmed |
Risk assessment algorithm for power transformer fleets based on condition and strategic importance |
title_sort |
Risk assessment algorithm for power transformer fleets based on condition and strategic importance |
dc.creator.none.fl_str_mv |
Zaldivar Sanchez, Diego Armando Romero Quete, Andrés Arturo Rivera, Sergio R. |
author |
Zaldivar Sanchez, Diego Armando |
author_facet |
Zaldivar Sanchez, Diego Armando Romero Quete, Andrés Arturo Rivera, Sergio R. |
author_role |
author |
author2 |
Romero Quete, Andrés Arturo Rivera, Sergio R. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
risk assessment health index power transformers fuzzy logic importance index |
topic |
risk assessment health index power transformers fuzzy logic importance index |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In every electric power system, power transformers (PT) play a critical role. Under ideal circumstances, PT should receive the utmost care to maintain the highest operative condition during their lifetime. Through the years, different approaches have been developed to assess the condition and the inherent risk during the operation of PT. However, most proposed methodologies tend to analyze PT as individuals and not as a fleet. A fleet assessment helps the asset manager make sound decisions regarding the maintenance scheduling for groups of PT with similar conditions. This paper proposes a new methodology to assess the risk of PT fleets, considering the technical condition and the strategic importance of the units. First, the state of the units was evaluated using a health index (HI) with a fuzzy logic algorithm. Then, the strategic importance of each unit was assessed using a weighting technique to obtain the importance index (II). Finally, the analyzed units with similar HI and II were arranged into a set of clusters using the k-means clustering technique. A fleet of 19 PTs was used to validate the proposed method. The obtained results are also provided to demonstrate the viability and feasibility of the assessment model. Fil: Zaldivar Sanchez, Diego Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina Fil: Romero Quete, Andrés Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina Fil: Rivera, Sergio R.. Universidad Nacional de Colombia; Colombia |
description |
In every electric power system, power transformers (PT) play a critical role. Under ideal circumstances, PT should receive the utmost care to maintain the highest operative condition during their lifetime. Through the years, different approaches have been developed to assess the condition and the inherent risk during the operation of PT. However, most proposed methodologies tend to analyze PT as individuals and not as a fleet. A fleet assessment helps the asset manager make sound decisions regarding the maintenance scheduling for groups of PT with similar conditions. This paper proposes a new methodology to assess the risk of PT fleets, considering the technical condition and the strategic importance of the units. First, the state of the units was evaluated using a health index (HI) with a fuzzy logic algorithm. Then, the strategic importance of each unit was assessed using a weighting technique to obtain the importance index (II). Finally, the analyzed units with similar HI and II were arranged into a set of clusters using the k-means clustering technique. A fleet of 19 PTs was used to validate the proposed method. The obtained results are also provided to demonstrate the viability and feasibility of the assessment model. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/179031 Zaldivar Sanchez, Diego Armando; Romero Quete, Andrés Arturo; Rivera, Sergio R.; Risk assessment algorithm for power transformer fleets based on condition and strategic importance; Multidisciplinary Digital Publishing Institute; Algorithms; 14; 11; 10-2021; 1-13 1999-4893 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/179031 |
identifier_str_mv |
Zaldivar Sanchez, Diego Armando; Romero Quete, Andrés Arturo; Rivera, Sergio R.; Risk assessment algorithm for power transformer fleets based on condition and strategic importance; Multidisciplinary Digital Publishing Institute; Algorithms; 14; 11; 10-2021; 1-13 1999-4893 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1999-4893/14/11/319 info:eu-repo/semantics/altIdentifier/doi/10.3390/a14110319 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613413203869696 |
score |
13.070432 |