Effect of a confining surface on a mixture with spontaneous inhomogeneities

Autores
Patsahan, O.; Meyra, Ariel German; Ciach, A.
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A binary self-assembling mixture near a planar wall is studied by theory and Monte Carlo simulations. The grand potential functional of the local concentration and the local volume fraction of all particles is developed in the framework of the density functional and field-theoretic methods. We obtain ordinary differential Euler–Lagrange equations for the concentration and the volume fraction, and solve them analytically in the perturbation expansion. The obtained exponentially damped oscillations of the concentration, with the characteristic lengths the same as in the concentration-concentration correlation function, agree very well with simulations. For the excess volume fraction we obtain a monotonic decay superimposed on the exponentially damped oscillations with a fair agreement with simulations. The period of the density oscillations is equal to half the period of the concentration oscillations in both the theory and simulations. Simulations show local ordering in the layers parallel to the wall that are rich in one of the two components. Bubbles, stripes and clusters appear in the subsequent layers for increasing distance from the wall. Between these almost one-component layers the density takes minima, and a bulk-like structure with clusters of different particles being nearest neighbors appears.
Fil: Patsahan, O.. National Academy of Sciences of Ukraine; Ucrania
Fil: Meyra, Ariel German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Ciach, A.. Polish Academy of Sciences; Argentina
Materia
COMPLEX MIXTURE
EFFECT OF CLUSTERING ON ADSORPTION
SELF-ASSEMBLY
THEORY FOR MESOSCOPIC INHOMOGENEITIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/209582

id CONICETDig_71d4ae92c8f174ab8496c625b210bae3
oai_identifier_str oai:ri.conicet.gov.ar:11336/209582
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effect of a confining surface on a mixture with spontaneous inhomogeneitiesPatsahan, O.Meyra, Ariel GermanCiach, A.COMPLEX MIXTUREEFFECT OF CLUSTERING ON ADSORPTIONSELF-ASSEMBLYTHEORY FOR MESOSCOPIC INHOMOGENEITIEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A binary self-assembling mixture near a planar wall is studied by theory and Monte Carlo simulations. The grand potential functional of the local concentration and the local volume fraction of all particles is developed in the framework of the density functional and field-theoretic methods. We obtain ordinary differential Euler–Lagrange equations for the concentration and the volume fraction, and solve them analytically in the perturbation expansion. The obtained exponentially damped oscillations of the concentration, with the characteristic lengths the same as in the concentration-concentration correlation function, agree very well with simulations. For the excess volume fraction we obtain a monotonic decay superimposed on the exponentially damped oscillations with a fair agreement with simulations. The period of the density oscillations is equal to half the period of the concentration oscillations in both the theory and simulations. Simulations show local ordering in the layers parallel to the wall that are rich in one of the two components. Bubbles, stripes and clusters appear in the subsequent layers for increasing distance from the wall. Between these almost one-component layers the density takes minima, and a bulk-like structure with clusters of different particles being nearest neighbors appears.Fil: Patsahan, O.. National Academy of Sciences of Ukraine; UcraniaFil: Meyra, Ariel German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Ciach, A.. Polish Academy of Sciences; ArgentinaElsevier Science2022-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/209582Patsahan, O.; Meyra, Ariel German; Ciach, A.; Effect of a confining surface on a mixture with spontaneous inhomogeneities; Elsevier Science; Journal of Molecular Liquids; 363; 10-2022; 1-110167-7322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167732222013824info:eu-repo/semantics/altIdentifier/doi/10.1016/j.molliq.2022.119844info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:54:23Zoai:ri.conicet.gov.ar:11336/209582instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:54:23.571CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effect of a confining surface on a mixture with spontaneous inhomogeneities
title Effect of a confining surface on a mixture with spontaneous inhomogeneities
spellingShingle Effect of a confining surface on a mixture with spontaneous inhomogeneities
Patsahan, O.
COMPLEX MIXTURE
EFFECT OF CLUSTERING ON ADSORPTION
SELF-ASSEMBLY
THEORY FOR MESOSCOPIC INHOMOGENEITIES
title_short Effect of a confining surface on a mixture with spontaneous inhomogeneities
title_full Effect of a confining surface on a mixture with spontaneous inhomogeneities
title_fullStr Effect of a confining surface on a mixture with spontaneous inhomogeneities
title_full_unstemmed Effect of a confining surface on a mixture with spontaneous inhomogeneities
title_sort Effect of a confining surface on a mixture with spontaneous inhomogeneities
dc.creator.none.fl_str_mv Patsahan, O.
Meyra, Ariel German
Ciach, A.
author Patsahan, O.
author_facet Patsahan, O.
Meyra, Ariel German
Ciach, A.
author_role author
author2 Meyra, Ariel German
Ciach, A.
author2_role author
author
dc.subject.none.fl_str_mv COMPLEX MIXTURE
EFFECT OF CLUSTERING ON ADSORPTION
SELF-ASSEMBLY
THEORY FOR MESOSCOPIC INHOMOGENEITIES
topic COMPLEX MIXTURE
EFFECT OF CLUSTERING ON ADSORPTION
SELF-ASSEMBLY
THEORY FOR MESOSCOPIC INHOMOGENEITIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A binary self-assembling mixture near a planar wall is studied by theory and Monte Carlo simulations. The grand potential functional of the local concentration and the local volume fraction of all particles is developed in the framework of the density functional and field-theoretic methods. We obtain ordinary differential Euler–Lagrange equations for the concentration and the volume fraction, and solve them analytically in the perturbation expansion. The obtained exponentially damped oscillations of the concentration, with the characteristic lengths the same as in the concentration-concentration correlation function, agree very well with simulations. For the excess volume fraction we obtain a monotonic decay superimposed on the exponentially damped oscillations with a fair agreement with simulations. The period of the density oscillations is equal to half the period of the concentration oscillations in both the theory and simulations. Simulations show local ordering in the layers parallel to the wall that are rich in one of the two components. Bubbles, stripes and clusters appear in the subsequent layers for increasing distance from the wall. Between these almost one-component layers the density takes minima, and a bulk-like structure with clusters of different particles being nearest neighbors appears.
Fil: Patsahan, O.. National Academy of Sciences of Ukraine; Ucrania
Fil: Meyra, Ariel German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Ciach, A.. Polish Academy of Sciences; Argentina
description A binary self-assembling mixture near a planar wall is studied by theory and Monte Carlo simulations. The grand potential functional of the local concentration and the local volume fraction of all particles is developed in the framework of the density functional and field-theoretic methods. We obtain ordinary differential Euler–Lagrange equations for the concentration and the volume fraction, and solve them analytically in the perturbation expansion. The obtained exponentially damped oscillations of the concentration, with the characteristic lengths the same as in the concentration-concentration correlation function, agree very well with simulations. For the excess volume fraction we obtain a monotonic decay superimposed on the exponentially damped oscillations with a fair agreement with simulations. The period of the density oscillations is equal to half the period of the concentration oscillations in both the theory and simulations. Simulations show local ordering in the layers parallel to the wall that are rich in one of the two components. Bubbles, stripes and clusters appear in the subsequent layers for increasing distance from the wall. Between these almost one-component layers the density takes minima, and a bulk-like structure with clusters of different particles being nearest neighbors appears.
publishDate 2022
dc.date.none.fl_str_mv 2022-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/209582
Patsahan, O.; Meyra, Ariel German; Ciach, A.; Effect of a confining surface on a mixture with spontaneous inhomogeneities; Elsevier Science; Journal of Molecular Liquids; 363; 10-2022; 1-11
0167-7322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/209582
identifier_str_mv Patsahan, O.; Meyra, Ariel German; Ciach, A.; Effect of a confining surface on a mixture with spontaneous inhomogeneities; Elsevier Science; Journal of Molecular Liquids; 363; 10-2022; 1-11
0167-7322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167732222013824
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.molliq.2022.119844
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613652441726976
score 13.070432