Effect of a confining surface on a mixture with spontaneous inhomogeneities
- Autores
- Patsahan, O.; Meyra, Ariel German; Ciach, A.
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A binary self-assembling mixture near a planar wall is studied by theory and Monte Carlo simulations. The grand potential functional of the local concentration and the local volume fraction of all particles is developed in the framework of the density functional and field-theoretic methods. We obtain ordinary differential Euler–Lagrange equations for the concentration and the volume fraction, and solve them analytically in the perturbation expansion. The obtained exponentially damped oscillations of the concentration, with the characteristic lengths the same as in the concentration-concentration correlation function, agree very well with simulations. For the excess volume fraction we obtain a monotonic decay superimposed on the exponentially damped oscillations with a fair agreement with simulations. The period of the density oscillations is equal to half the period of the concentration oscillations in both the theory and simulations. Simulations show local ordering in the layers parallel to the wall that are rich in one of the two components. Bubbles, stripes and clusters appear in the subsequent layers for increasing distance from the wall. Between these almost one-component layers the density takes minima, and a bulk-like structure with clusters of different particles being nearest neighbors appears.
Fil: Patsahan, O.. National Academy of Sciences of Ukraine; Ucrania
Fil: Meyra, Ariel German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Ciach, A.. Polish Academy of Sciences; Argentina - Materia
-
COMPLEX MIXTURE
EFFECT OF CLUSTERING ON ADSORPTION
SELF-ASSEMBLY
THEORY FOR MESOSCOPIC INHOMOGENEITIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/209582
Ver los metadatos del registro completo
id |
CONICETDig_71d4ae92c8f174ab8496c625b210bae3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/209582 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Effect of a confining surface on a mixture with spontaneous inhomogeneitiesPatsahan, O.Meyra, Ariel GermanCiach, A.COMPLEX MIXTUREEFFECT OF CLUSTERING ON ADSORPTIONSELF-ASSEMBLYTHEORY FOR MESOSCOPIC INHOMOGENEITIEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A binary self-assembling mixture near a planar wall is studied by theory and Monte Carlo simulations. The grand potential functional of the local concentration and the local volume fraction of all particles is developed in the framework of the density functional and field-theoretic methods. We obtain ordinary differential Euler–Lagrange equations for the concentration and the volume fraction, and solve them analytically in the perturbation expansion. The obtained exponentially damped oscillations of the concentration, with the characteristic lengths the same as in the concentration-concentration correlation function, agree very well with simulations. For the excess volume fraction we obtain a monotonic decay superimposed on the exponentially damped oscillations with a fair agreement with simulations. The period of the density oscillations is equal to half the period of the concentration oscillations in both the theory and simulations. Simulations show local ordering in the layers parallel to the wall that are rich in one of the two components. Bubbles, stripes and clusters appear in the subsequent layers for increasing distance from the wall. Between these almost one-component layers the density takes minima, and a bulk-like structure with clusters of different particles being nearest neighbors appears.Fil: Patsahan, O.. National Academy of Sciences of Ukraine; UcraniaFil: Meyra, Ariel German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Ciach, A.. Polish Academy of Sciences; ArgentinaElsevier Science2022-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/209582Patsahan, O.; Meyra, Ariel German; Ciach, A.; Effect of a confining surface on a mixture with spontaneous inhomogeneities; Elsevier Science; Journal of Molecular Liquids; 363; 10-2022; 1-110167-7322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167732222013824info:eu-repo/semantics/altIdentifier/doi/10.1016/j.molliq.2022.119844info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:54:23Zoai:ri.conicet.gov.ar:11336/209582instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:54:23.571CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Effect of a confining surface on a mixture with spontaneous inhomogeneities |
title |
Effect of a confining surface on a mixture with spontaneous inhomogeneities |
spellingShingle |
Effect of a confining surface on a mixture with spontaneous inhomogeneities Patsahan, O. COMPLEX MIXTURE EFFECT OF CLUSTERING ON ADSORPTION SELF-ASSEMBLY THEORY FOR MESOSCOPIC INHOMOGENEITIES |
title_short |
Effect of a confining surface on a mixture with spontaneous inhomogeneities |
title_full |
Effect of a confining surface on a mixture with spontaneous inhomogeneities |
title_fullStr |
Effect of a confining surface on a mixture with spontaneous inhomogeneities |
title_full_unstemmed |
Effect of a confining surface on a mixture with spontaneous inhomogeneities |
title_sort |
Effect of a confining surface on a mixture with spontaneous inhomogeneities |
dc.creator.none.fl_str_mv |
Patsahan, O. Meyra, Ariel German Ciach, A. |
author |
Patsahan, O. |
author_facet |
Patsahan, O. Meyra, Ariel German Ciach, A. |
author_role |
author |
author2 |
Meyra, Ariel German Ciach, A. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
COMPLEX MIXTURE EFFECT OF CLUSTERING ON ADSORPTION SELF-ASSEMBLY THEORY FOR MESOSCOPIC INHOMOGENEITIES |
topic |
COMPLEX MIXTURE EFFECT OF CLUSTERING ON ADSORPTION SELF-ASSEMBLY THEORY FOR MESOSCOPIC INHOMOGENEITIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A binary self-assembling mixture near a planar wall is studied by theory and Monte Carlo simulations. The grand potential functional of the local concentration and the local volume fraction of all particles is developed in the framework of the density functional and field-theoretic methods. We obtain ordinary differential Euler–Lagrange equations for the concentration and the volume fraction, and solve them analytically in the perturbation expansion. The obtained exponentially damped oscillations of the concentration, with the characteristic lengths the same as in the concentration-concentration correlation function, agree very well with simulations. For the excess volume fraction we obtain a monotonic decay superimposed on the exponentially damped oscillations with a fair agreement with simulations. The period of the density oscillations is equal to half the period of the concentration oscillations in both the theory and simulations. Simulations show local ordering in the layers parallel to the wall that are rich in one of the two components. Bubbles, stripes and clusters appear in the subsequent layers for increasing distance from the wall. Between these almost one-component layers the density takes minima, and a bulk-like structure with clusters of different particles being nearest neighbors appears. Fil: Patsahan, O.. National Academy of Sciences of Ukraine; Ucrania Fil: Meyra, Ariel German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina Fil: Ciach, A.. Polish Academy of Sciences; Argentina |
description |
A binary self-assembling mixture near a planar wall is studied by theory and Monte Carlo simulations. The grand potential functional of the local concentration and the local volume fraction of all particles is developed in the framework of the density functional and field-theoretic methods. We obtain ordinary differential Euler–Lagrange equations for the concentration and the volume fraction, and solve them analytically in the perturbation expansion. The obtained exponentially damped oscillations of the concentration, with the characteristic lengths the same as in the concentration-concentration correlation function, agree very well with simulations. For the excess volume fraction we obtain a monotonic decay superimposed on the exponentially damped oscillations with a fair agreement with simulations. The period of the density oscillations is equal to half the period of the concentration oscillations in both the theory and simulations. Simulations show local ordering in the layers parallel to the wall that are rich in one of the two components. Bubbles, stripes and clusters appear in the subsequent layers for increasing distance from the wall. Between these almost one-component layers the density takes minima, and a bulk-like structure with clusters of different particles being nearest neighbors appears. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/209582 Patsahan, O.; Meyra, Ariel German; Ciach, A.; Effect of a confining surface on a mixture with spontaneous inhomogeneities; Elsevier Science; Journal of Molecular Liquids; 363; 10-2022; 1-11 0167-7322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/209582 |
identifier_str_mv |
Patsahan, O.; Meyra, Ariel German; Ciach, A.; Effect of a confining surface on a mixture with spontaneous inhomogeneities; Elsevier Science; Journal of Molecular Liquids; 363; 10-2022; 1-11 0167-7322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167732222013824 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.molliq.2022.119844 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613652441726976 |
score |
13.070432 |