Destabilization of the LiNH2–LiH hydrogen storage system by aluminum incorporation

Autores
Fernández Albanesi, Luisa Francisca; Arneodo Larochette, Pierre Paul; Gennari, Fabiana Cristina
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The lithium amide–lithium hydride system (LiNH2–LiH) is one of the most attractive light-weight materials for hydrogen storage. In an effort to improve its hydrogen sorption kinetics, the effect of 1 mol% AlCl3 addition to LiNH2–LiH system was systematically investigated by differential scanning calorimetry, X-ray diffraction, Fourier transform infrared analysis and hydrogen volumetric measurements. It is shown that Al3+ is incorporated into the LiNH2 structure by partial substitution of Li+ forming a new amide in the Li–Al–N–H system, which is reversible under hydriding/dehydriding cycles. This new substituted amide displays improved hydrogen storage properties with respect to LiNH2–LiH. In fact, a stable hydrogen storage capacity of about 4.5–5.0 wt% is observed under cycling and is completely desorbed in 30 min at 275 °C for the Li–Al–N–H system. Moreover, the concurrent incorporation of Al3+ and the presence of LiH are effective for mitigating the ammonia release. The results reveal a common reaction pathway for LiNH2–LiH and LiNH2–LiH plus 1 mol% AlCl3 systems, but the thermodynamic properties are changed by the inclusion of Al3+ in the LiNH2 structure. These findings have important implications for tailoring the properties of the Li–N–H system.
Fil: Fernández Albanesi, Luisa Francisca. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Arneodo Larochette, Pierre Paul. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gennari, Fabiana Cristina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Amide
Hydrogen Storage
Complex Hydride
Desorption
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17575

id CONICETDig_714cb8631b59c8c6e853a7c18e09ed66
oai_identifier_str oai:ri.conicet.gov.ar:11336/17575
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Destabilization of the LiNH2–LiH hydrogen storage system by aluminum incorporationFernández Albanesi, Luisa FranciscaArneodo Larochette, Pierre PaulGennari, Fabiana CristinaAmideHydrogen StorageComplex HydrideDesorptionhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2The lithium amide–lithium hydride system (LiNH2–LiH) is one of the most attractive light-weight materials for hydrogen storage. In an effort to improve its hydrogen sorption kinetics, the effect of 1 mol% AlCl3 addition to LiNH2–LiH system was systematically investigated by differential scanning calorimetry, X-ray diffraction, Fourier transform infrared analysis and hydrogen volumetric measurements. It is shown that Al3+ is incorporated into the LiNH2 structure by partial substitution of Li+ forming a new amide in the Li–Al–N–H system, which is reversible under hydriding/dehydriding cycles. This new substituted amide displays improved hydrogen storage properties with respect to LiNH2–LiH. In fact, a stable hydrogen storage capacity of about 4.5–5.0 wt% is observed under cycling and is completely desorbed in 30 min at 275 °C for the Li–Al–N–H system. Moreover, the concurrent incorporation of Al3+ and the presence of LiH are effective for mitigating the ammonia release. The results reveal a common reaction pathway for LiNH2–LiH and LiNH2–LiH plus 1 mol% AlCl3 systems, but the thermodynamic properties are changed by the inclusion of Al3+ in the LiNH2 structure. These findings have important implications for tailoring the properties of the Li–N–H system.Fil: Fernández Albanesi, Luisa Francisca. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Arneodo Larochette, Pierre Paul. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gennari, Fabiana Cristina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17575Fernández Albanesi, Luisa Francisca; Arneodo Larochette, Pierre Paul; Gennari, Fabiana Cristina; Destabilization of the LiNH2–LiH hydrogen storage system by aluminum incorporation; Elsevier; International Journal Of Hydrogen Energy; 38; 28; 9-2013; 12325-123340360-3199enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2013.07.030info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0360319913017308?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:24:21Zoai:ri.conicet.gov.ar:11336/17575instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:24:21.858CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Destabilization of the LiNH2–LiH hydrogen storage system by aluminum incorporation
title Destabilization of the LiNH2–LiH hydrogen storage system by aluminum incorporation
spellingShingle Destabilization of the LiNH2–LiH hydrogen storage system by aluminum incorporation
Fernández Albanesi, Luisa Francisca
Amide
Hydrogen Storage
Complex Hydride
Desorption
title_short Destabilization of the LiNH2–LiH hydrogen storage system by aluminum incorporation
title_full Destabilization of the LiNH2–LiH hydrogen storage system by aluminum incorporation
title_fullStr Destabilization of the LiNH2–LiH hydrogen storage system by aluminum incorporation
title_full_unstemmed Destabilization of the LiNH2–LiH hydrogen storage system by aluminum incorporation
title_sort Destabilization of the LiNH2–LiH hydrogen storage system by aluminum incorporation
dc.creator.none.fl_str_mv Fernández Albanesi, Luisa Francisca
Arneodo Larochette, Pierre Paul
Gennari, Fabiana Cristina
author Fernández Albanesi, Luisa Francisca
author_facet Fernández Albanesi, Luisa Francisca
Arneodo Larochette, Pierre Paul
Gennari, Fabiana Cristina
author_role author
author2 Arneodo Larochette, Pierre Paul
Gennari, Fabiana Cristina
author2_role author
author
dc.subject.none.fl_str_mv Amide
Hydrogen Storage
Complex Hydride
Desorption
topic Amide
Hydrogen Storage
Complex Hydride
Desorption
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The lithium amide–lithium hydride system (LiNH2–LiH) is one of the most attractive light-weight materials for hydrogen storage. In an effort to improve its hydrogen sorption kinetics, the effect of 1 mol% AlCl3 addition to LiNH2–LiH system was systematically investigated by differential scanning calorimetry, X-ray diffraction, Fourier transform infrared analysis and hydrogen volumetric measurements. It is shown that Al3+ is incorporated into the LiNH2 structure by partial substitution of Li+ forming a new amide in the Li–Al–N–H system, which is reversible under hydriding/dehydriding cycles. This new substituted amide displays improved hydrogen storage properties with respect to LiNH2–LiH. In fact, a stable hydrogen storage capacity of about 4.5–5.0 wt% is observed under cycling and is completely desorbed in 30 min at 275 °C for the Li–Al–N–H system. Moreover, the concurrent incorporation of Al3+ and the presence of LiH are effective for mitigating the ammonia release. The results reveal a common reaction pathway for LiNH2–LiH and LiNH2–LiH plus 1 mol% AlCl3 systems, but the thermodynamic properties are changed by the inclusion of Al3+ in the LiNH2 structure. These findings have important implications for tailoring the properties of the Li–N–H system.
Fil: Fernández Albanesi, Luisa Francisca. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Arneodo Larochette, Pierre Paul. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gennari, Fabiana Cristina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The lithium amide–lithium hydride system (LiNH2–LiH) is one of the most attractive light-weight materials for hydrogen storage. In an effort to improve its hydrogen sorption kinetics, the effect of 1 mol% AlCl3 addition to LiNH2–LiH system was systematically investigated by differential scanning calorimetry, X-ray diffraction, Fourier transform infrared analysis and hydrogen volumetric measurements. It is shown that Al3+ is incorporated into the LiNH2 structure by partial substitution of Li+ forming a new amide in the Li–Al–N–H system, which is reversible under hydriding/dehydriding cycles. This new substituted amide displays improved hydrogen storage properties with respect to LiNH2–LiH. In fact, a stable hydrogen storage capacity of about 4.5–5.0 wt% is observed under cycling and is completely desorbed in 30 min at 275 °C for the Li–Al–N–H system. Moreover, the concurrent incorporation of Al3+ and the presence of LiH are effective for mitigating the ammonia release. The results reveal a common reaction pathway for LiNH2–LiH and LiNH2–LiH plus 1 mol% AlCl3 systems, but the thermodynamic properties are changed by the inclusion of Al3+ in the LiNH2 structure. These findings have important implications for tailoring the properties of the Li–N–H system.
publishDate 2013
dc.date.none.fl_str_mv 2013-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17575
Fernández Albanesi, Luisa Francisca; Arneodo Larochette, Pierre Paul; Gennari, Fabiana Cristina; Destabilization of the LiNH2–LiH hydrogen storage system by aluminum incorporation; Elsevier; International Journal Of Hydrogen Energy; 38; 28; 9-2013; 12325-12334
0360-3199
url http://hdl.handle.net/11336/17575
identifier_str_mv Fernández Albanesi, Luisa Francisca; Arneodo Larochette, Pierre Paul; Gennari, Fabiana Cristina; Destabilization of the LiNH2–LiH hydrogen storage system by aluminum incorporation; Elsevier; International Journal Of Hydrogen Energy; 38; 28; 9-2013; 12325-12334
0360-3199
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijhydene.2013.07.030
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0360319913017308?via%3Dihub
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981350933528576
score 12.48226