Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular...

Autores
Roa Díaz, Simón Andre; Redondo, Carolina; Akinoglu, Goekalp Engin; Pedano, Maria Laura; Maguregui, Maite; Sirena, Martin; Morales, Rafael
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Noble metal-based Photonic Crystals (PCs) have emerged as outstanding candidates for precise light management, projecting applications in strategic areas for society like high-sensitivity and fast molecular (inorganic/organic/bio) sensing by Surface-Enhanced Raman Spectroscopy (SERS). In this work, we report an exhaustive study on the potential of large-scale (active area >1 [cm2]) Au nanodisks-based 2D PCs fabricated by single-beam Laser Interference Lithography (LIL) for high-performance SERS molecular sensing. This technique was used to fabricate periodic nanoarrays (period of 470 [nm]) of Au nanodisks with thicknesses from 50 up to 125 [nm]. The period was chosen following Finite-Difference Time-Domain (FDTD) simulations that suggested the best electric-near field enhancement for this condition. Confocal Raman microscopy and Methylene Blue (MB) as active Raman marker, were used to assess the samples´ performance for molecular sensing. SERS studies have shown that the nanodisks´ thickness can be a considerable size parameter for the Raman signal amplification, observing higher signal enhancements for higher thicknesses. The observed thickness effects on the Raman signal enhancement were consistent with FDTD simulations, which predicted higher electric-near field amplifications for higher thickness within the red/near-infrared range. Results show that our PCs enable to measure the characteristic Raman footprint of the analyte with good spectral resolution using relatively low powers (0.04–1 [mW]) and short acquisition times (1–30 [s]), considering an MB surface mass density as low as 2.6 [ng/cm2]. SERS enhancement factors as high as 2 x 107 were achieved for PCs with the highest thickness, representing a competitive performance concerning typically reported values (104–107) for current noble metal-based PCs technologies and a new record concerning PCs fabricated by LIL (104–105). This research demonstrates the high competitivity of these simple Au nanodisks-based 2D PCs, fabricated using an efficient large-scale and low-cost lithography technique, for fast, high spectral resolution and highly reproducible SERS-based molecular sensing.
Fil: Roa Díaz, Simón Andre. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
Fil: Redondo, Carolina. Universidad del País Vasco; España
Fil: Akinoglu, Goekalp Engin. University of Melbourne; Australia
Fil: Pedano, Maria Laura. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
Fil: Maguregui, Maite. Universidad del País Vasco; España
Fil: Sirena, Martin. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
Fil: Morales, Rafael. Universidad del País Vasco; España
Materia
Molecular Sensing
Surface-Enhanced Raman Spectroscopy
2D Photonic Crystals
Interference Laser Lithography
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/265829

id CONICETDig_70f5cf7a9e583ce8f27ad4a97079debd
oai_identifier_str oai:ri.conicet.gov.ar:11336/265829
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensorsRoa Díaz, Simón AndreRedondo, CarolinaAkinoglu, Goekalp EnginPedano, Maria LauraMaguregui, MaiteSirena, MartinMorales, RafaelMolecular SensingSurface-Enhanced Raman Spectroscopy2D Photonic CrystalsInterference Laser Lithographyhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Noble metal-based Photonic Crystals (PCs) have emerged as outstanding candidates for precise light management, projecting applications in strategic areas for society like high-sensitivity and fast molecular (inorganic/organic/bio) sensing by Surface-Enhanced Raman Spectroscopy (SERS). In this work, we report an exhaustive study on the potential of large-scale (active area >1 [cm2]) Au nanodisks-based 2D PCs fabricated by single-beam Laser Interference Lithography (LIL) for high-performance SERS molecular sensing. This technique was used to fabricate periodic nanoarrays (period of 470 [nm]) of Au nanodisks with thicknesses from 50 up to 125 [nm]. The period was chosen following Finite-Difference Time-Domain (FDTD) simulations that suggested the best electric-near field enhancement for this condition. Confocal Raman microscopy and Methylene Blue (MB) as active Raman marker, were used to assess the samples´ performance for molecular sensing. SERS studies have shown that the nanodisks´ thickness can be a considerable size parameter for the Raman signal amplification, observing higher signal enhancements for higher thicknesses. The observed thickness effects on the Raman signal enhancement were consistent with FDTD simulations, which predicted higher electric-near field amplifications for higher thickness within the red/near-infrared range. Results show that our PCs enable to measure the characteristic Raman footprint of the analyte with good spectral resolution using relatively low powers (0.04–1 [mW]) and short acquisition times (1–30 [s]), considering an MB surface mass density as low as 2.6 [ng/cm2]. SERS enhancement factors as high as 2 x 107 were achieved for PCs with the highest thickness, representing a competitive performance concerning typically reported values (104–107) for current noble metal-based PCs technologies and a new record concerning PCs fabricated by LIL (104–105). This research demonstrates the high competitivity of these simple Au nanodisks-based 2D PCs, fabricated using an efficient large-scale and low-cost lithography technique, for fast, high spectral resolution and highly reproducible SERS-based molecular sensing.Fil: Roa Díaz, Simón Andre. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Redondo, Carolina. Universidad del País Vasco; EspañaFil: Akinoglu, Goekalp Engin. University of Melbourne; AustraliaFil: Pedano, Maria Laura. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Maguregui, Maite. Universidad del País Vasco; EspañaFil: Sirena, Martin. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Morales, Rafael. Universidad del País Vasco; EspañaElsevier2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265829Roa Díaz, Simón Andre; Redondo, Carolina; Akinoglu, Goekalp Engin; Pedano, Maria Laura; Maguregui, Maite; et al.; Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors; Elsevier; Materials Today Chemistry; 38; 6-2024; 1-122468-5194CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2468519424002076info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mtchem.2024.102101info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:24:42Zoai:ri.conicet.gov.ar:11336/265829instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:24:43.045CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors
title Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors
spellingShingle Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors
Roa Díaz, Simón Andre
Molecular Sensing
Surface-Enhanced Raman Spectroscopy
2D Photonic Crystals
Interference Laser Lithography
title_short Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors
title_full Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors
title_fullStr Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors
title_full_unstemmed Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors
title_sort Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors
dc.creator.none.fl_str_mv Roa Díaz, Simón Andre
Redondo, Carolina
Akinoglu, Goekalp Engin
Pedano, Maria Laura
Maguregui, Maite
Sirena, Martin
Morales, Rafael
author Roa Díaz, Simón Andre
author_facet Roa Díaz, Simón Andre
Redondo, Carolina
Akinoglu, Goekalp Engin
Pedano, Maria Laura
Maguregui, Maite
Sirena, Martin
Morales, Rafael
author_role author
author2 Redondo, Carolina
Akinoglu, Goekalp Engin
Pedano, Maria Laura
Maguregui, Maite
Sirena, Martin
Morales, Rafael
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Molecular Sensing
Surface-Enhanced Raman Spectroscopy
2D Photonic Crystals
Interference Laser Lithography
topic Molecular Sensing
Surface-Enhanced Raman Spectroscopy
2D Photonic Crystals
Interference Laser Lithography
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Noble metal-based Photonic Crystals (PCs) have emerged as outstanding candidates for precise light management, projecting applications in strategic areas for society like high-sensitivity and fast molecular (inorganic/organic/bio) sensing by Surface-Enhanced Raman Spectroscopy (SERS). In this work, we report an exhaustive study on the potential of large-scale (active area >1 [cm2]) Au nanodisks-based 2D PCs fabricated by single-beam Laser Interference Lithography (LIL) for high-performance SERS molecular sensing. This technique was used to fabricate periodic nanoarrays (period of 470 [nm]) of Au nanodisks with thicknesses from 50 up to 125 [nm]. The period was chosen following Finite-Difference Time-Domain (FDTD) simulations that suggested the best electric-near field enhancement for this condition. Confocal Raman microscopy and Methylene Blue (MB) as active Raman marker, were used to assess the samples´ performance for molecular sensing. SERS studies have shown that the nanodisks´ thickness can be a considerable size parameter for the Raman signal amplification, observing higher signal enhancements for higher thicknesses. The observed thickness effects on the Raman signal enhancement were consistent with FDTD simulations, which predicted higher electric-near field amplifications for higher thickness within the red/near-infrared range. Results show that our PCs enable to measure the characteristic Raman footprint of the analyte with good spectral resolution using relatively low powers (0.04–1 [mW]) and short acquisition times (1–30 [s]), considering an MB surface mass density as low as 2.6 [ng/cm2]. SERS enhancement factors as high as 2 x 107 were achieved for PCs with the highest thickness, representing a competitive performance concerning typically reported values (104–107) for current noble metal-based PCs technologies and a new record concerning PCs fabricated by LIL (104–105). This research demonstrates the high competitivity of these simple Au nanodisks-based 2D PCs, fabricated using an efficient large-scale and low-cost lithography technique, for fast, high spectral resolution and highly reproducible SERS-based molecular sensing.
Fil: Roa Díaz, Simón Andre. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
Fil: Redondo, Carolina. Universidad del País Vasco; España
Fil: Akinoglu, Goekalp Engin. University of Melbourne; Australia
Fil: Pedano, Maria Laura. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
Fil: Maguregui, Maite. Universidad del País Vasco; España
Fil: Sirena, Martin. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
Fil: Morales, Rafael. Universidad del País Vasco; España
description Noble metal-based Photonic Crystals (PCs) have emerged as outstanding candidates for precise light management, projecting applications in strategic areas for society like high-sensitivity and fast molecular (inorganic/organic/bio) sensing by Surface-Enhanced Raman Spectroscopy (SERS). In this work, we report an exhaustive study on the potential of large-scale (active area >1 [cm2]) Au nanodisks-based 2D PCs fabricated by single-beam Laser Interference Lithography (LIL) for high-performance SERS molecular sensing. This technique was used to fabricate periodic nanoarrays (period of 470 [nm]) of Au nanodisks with thicknesses from 50 up to 125 [nm]. The period was chosen following Finite-Difference Time-Domain (FDTD) simulations that suggested the best electric-near field enhancement for this condition. Confocal Raman microscopy and Methylene Blue (MB) as active Raman marker, were used to assess the samples´ performance for molecular sensing. SERS studies have shown that the nanodisks´ thickness can be a considerable size parameter for the Raman signal amplification, observing higher signal enhancements for higher thicknesses. The observed thickness effects on the Raman signal enhancement were consistent with FDTD simulations, which predicted higher electric-near field amplifications for higher thickness within the red/near-infrared range. Results show that our PCs enable to measure the characteristic Raman footprint of the analyte with good spectral resolution using relatively low powers (0.04–1 [mW]) and short acquisition times (1–30 [s]), considering an MB surface mass density as low as 2.6 [ng/cm2]. SERS enhancement factors as high as 2 x 107 were achieved for PCs with the highest thickness, representing a competitive performance concerning typically reported values (104–107) for current noble metal-based PCs technologies and a new record concerning PCs fabricated by LIL (104–105). This research demonstrates the high competitivity of these simple Au nanodisks-based 2D PCs, fabricated using an efficient large-scale and low-cost lithography technique, for fast, high spectral resolution and highly reproducible SERS-based molecular sensing.
publishDate 2024
dc.date.none.fl_str_mv 2024-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/265829
Roa Díaz, Simón Andre; Redondo, Carolina; Akinoglu, Goekalp Engin; Pedano, Maria Laura; Maguregui, Maite; et al.; Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors; Elsevier; Materials Today Chemistry; 38; 6-2024; 1-12
2468-5194
CONICET Digital
CONICET
url http://hdl.handle.net/11336/265829
identifier_str_mv Roa Díaz, Simón Andre; Redondo, Carolina; Akinoglu, Goekalp Engin; Pedano, Maria Laura; Maguregui, Maite; et al.; Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors; Elsevier; Materials Today Chemistry; 38; 6-2024; 1-12
2468-5194
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2468519424002076
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mtchem.2024.102101
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614243948691456
score 13.070432