Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular...
- Autores
- Roa Díaz, Simón Andre; Redondo, Carolina; Akinoglu, Goekalp Engin; Pedano, Maria Laura; Maguregui, Maite; Sirena, Martin; Morales, Rafael
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Noble metal-based Photonic Crystals (PCs) have emerged as outstanding candidates for precise light management, projecting applications in strategic areas for society like high-sensitivity and fast molecular (inorganic/organic/bio) sensing by Surface-Enhanced Raman Spectroscopy (SERS). In this work, we report an exhaustive study on the potential of large-scale (active area >1 [cm2]) Au nanodisks-based 2D PCs fabricated by single-beam Laser Interference Lithography (LIL) for high-performance SERS molecular sensing. This technique was used to fabricate periodic nanoarrays (period of 470 [nm]) of Au nanodisks with thicknesses from 50 up to 125 [nm]. The period was chosen following Finite-Difference Time-Domain (FDTD) simulations that suggested the best electric-near field enhancement for this condition. Confocal Raman microscopy and Methylene Blue (MB) as active Raman marker, were used to assess the samples´ performance for molecular sensing. SERS studies have shown that the nanodisks´ thickness can be a considerable size parameter for the Raman signal amplification, observing higher signal enhancements for higher thicknesses. The observed thickness effects on the Raman signal enhancement were consistent with FDTD simulations, which predicted higher electric-near field amplifications for higher thickness within the red/near-infrared range. Results show that our PCs enable to measure the characteristic Raman footprint of the analyte with good spectral resolution using relatively low powers (0.04–1 [mW]) and short acquisition times (1–30 [s]), considering an MB surface mass density as low as 2.6 [ng/cm2]. SERS enhancement factors as high as 2 x 107 were achieved for PCs with the highest thickness, representing a competitive performance concerning typically reported values (104–107) for current noble metal-based PCs technologies and a new record concerning PCs fabricated by LIL (104–105). This research demonstrates the high competitivity of these simple Au nanodisks-based 2D PCs, fabricated using an efficient large-scale and low-cost lithography technique, for fast, high spectral resolution and highly reproducible SERS-based molecular sensing.
Fil: Roa Díaz, Simón Andre. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
Fil: Redondo, Carolina. Universidad del País Vasco; España
Fil: Akinoglu, Goekalp Engin. University of Melbourne; Australia
Fil: Pedano, Maria Laura. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
Fil: Maguregui, Maite. Universidad del País Vasco; España
Fil: Sirena, Martin. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina
Fil: Morales, Rafael. Universidad del País Vasco; España - Materia
-
Molecular Sensing
Surface-Enhanced Raman Spectroscopy
2D Photonic Crystals
Interference Laser Lithography - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/265829
Ver los metadatos del registro completo
id |
CONICETDig_70f5cf7a9e583ce8f27ad4a97079debd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/265829 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensorsRoa Díaz, Simón AndreRedondo, CarolinaAkinoglu, Goekalp EnginPedano, Maria LauraMaguregui, MaiteSirena, MartinMorales, RafaelMolecular SensingSurface-Enhanced Raman Spectroscopy2D Photonic CrystalsInterference Laser Lithographyhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Noble metal-based Photonic Crystals (PCs) have emerged as outstanding candidates for precise light management, projecting applications in strategic areas for society like high-sensitivity and fast molecular (inorganic/organic/bio) sensing by Surface-Enhanced Raman Spectroscopy (SERS). In this work, we report an exhaustive study on the potential of large-scale (active area >1 [cm2]) Au nanodisks-based 2D PCs fabricated by single-beam Laser Interference Lithography (LIL) for high-performance SERS molecular sensing. This technique was used to fabricate periodic nanoarrays (period of 470 [nm]) of Au nanodisks with thicknesses from 50 up to 125 [nm]. The period was chosen following Finite-Difference Time-Domain (FDTD) simulations that suggested the best electric-near field enhancement for this condition. Confocal Raman microscopy and Methylene Blue (MB) as active Raman marker, were used to assess the samples´ performance for molecular sensing. SERS studies have shown that the nanodisks´ thickness can be a considerable size parameter for the Raman signal amplification, observing higher signal enhancements for higher thicknesses. The observed thickness effects on the Raman signal enhancement were consistent with FDTD simulations, which predicted higher electric-near field amplifications for higher thickness within the red/near-infrared range. Results show that our PCs enable to measure the characteristic Raman footprint of the analyte with good spectral resolution using relatively low powers (0.04–1 [mW]) and short acquisition times (1–30 [s]), considering an MB surface mass density as low as 2.6 [ng/cm2]. SERS enhancement factors as high as 2 x 107 were achieved for PCs with the highest thickness, representing a competitive performance concerning typically reported values (104–107) for current noble metal-based PCs technologies and a new record concerning PCs fabricated by LIL (104–105). This research demonstrates the high competitivity of these simple Au nanodisks-based 2D PCs, fabricated using an efficient large-scale and low-cost lithography technique, for fast, high spectral resolution and highly reproducible SERS-based molecular sensing.Fil: Roa Díaz, Simón Andre. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Redondo, Carolina. Universidad del País Vasco; EspañaFil: Akinoglu, Goekalp Engin. University of Melbourne; AustraliaFil: Pedano, Maria Laura. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Maguregui, Maite. Universidad del País Vasco; EspañaFil: Sirena, Martin. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; ArgentinaFil: Morales, Rafael. Universidad del País Vasco; EspañaElsevier2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265829Roa Díaz, Simón Andre; Redondo, Carolina; Akinoglu, Goekalp Engin; Pedano, Maria Laura; Maguregui, Maite; et al.; Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors; Elsevier; Materials Today Chemistry; 38; 6-2024; 1-122468-5194CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2468519424002076info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mtchem.2024.102101info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:24:42Zoai:ri.conicet.gov.ar:11336/265829instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:24:43.045CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors |
title |
Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors |
spellingShingle |
Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors Roa Díaz, Simón Andre Molecular Sensing Surface-Enhanced Raman Spectroscopy 2D Photonic Crystals Interference Laser Lithography |
title_short |
Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors |
title_full |
Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors |
title_fullStr |
Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors |
title_full_unstemmed |
Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors |
title_sort |
Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors |
dc.creator.none.fl_str_mv |
Roa Díaz, Simón Andre Redondo, Carolina Akinoglu, Goekalp Engin Pedano, Maria Laura Maguregui, Maite Sirena, Martin Morales, Rafael |
author |
Roa Díaz, Simón Andre |
author_facet |
Roa Díaz, Simón Andre Redondo, Carolina Akinoglu, Goekalp Engin Pedano, Maria Laura Maguregui, Maite Sirena, Martin Morales, Rafael |
author_role |
author |
author2 |
Redondo, Carolina Akinoglu, Goekalp Engin Pedano, Maria Laura Maguregui, Maite Sirena, Martin Morales, Rafael |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Molecular Sensing Surface-Enhanced Raman Spectroscopy 2D Photonic Crystals Interference Laser Lithography |
topic |
Molecular Sensing Surface-Enhanced Raman Spectroscopy 2D Photonic Crystals Interference Laser Lithography |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Noble metal-based Photonic Crystals (PCs) have emerged as outstanding candidates for precise light management, projecting applications in strategic areas for society like high-sensitivity and fast molecular (inorganic/organic/bio) sensing by Surface-Enhanced Raman Spectroscopy (SERS). In this work, we report an exhaustive study on the potential of large-scale (active area >1 [cm2]) Au nanodisks-based 2D PCs fabricated by single-beam Laser Interference Lithography (LIL) for high-performance SERS molecular sensing. This technique was used to fabricate periodic nanoarrays (period of 470 [nm]) of Au nanodisks with thicknesses from 50 up to 125 [nm]. The period was chosen following Finite-Difference Time-Domain (FDTD) simulations that suggested the best electric-near field enhancement for this condition. Confocal Raman microscopy and Methylene Blue (MB) as active Raman marker, were used to assess the samples´ performance for molecular sensing. SERS studies have shown that the nanodisks´ thickness can be a considerable size parameter for the Raman signal amplification, observing higher signal enhancements for higher thicknesses. The observed thickness effects on the Raman signal enhancement were consistent with FDTD simulations, which predicted higher electric-near field amplifications for higher thickness within the red/near-infrared range. Results show that our PCs enable to measure the characteristic Raman footprint of the analyte with good spectral resolution using relatively low powers (0.04–1 [mW]) and short acquisition times (1–30 [s]), considering an MB surface mass density as low as 2.6 [ng/cm2]. SERS enhancement factors as high as 2 x 107 were achieved for PCs with the highest thickness, representing a competitive performance concerning typically reported values (104–107) for current noble metal-based PCs technologies and a new record concerning PCs fabricated by LIL (104–105). This research demonstrates the high competitivity of these simple Au nanodisks-based 2D PCs, fabricated using an efficient large-scale and low-cost lithography technique, for fast, high spectral resolution and highly reproducible SERS-based molecular sensing. Fil: Roa Díaz, Simón Andre. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina Fil: Redondo, Carolina. Universidad del País Vasco; España Fil: Akinoglu, Goekalp Engin. University of Melbourne; Australia Fil: Pedano, Maria Laura. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina Fil: Maguregui, Maite. Universidad del País Vasco; España Fil: Sirena, Martin. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina Fil: Morales, Rafael. Universidad del País Vasco; España |
description |
Noble metal-based Photonic Crystals (PCs) have emerged as outstanding candidates for precise light management, projecting applications in strategic areas for society like high-sensitivity and fast molecular (inorganic/organic/bio) sensing by Surface-Enhanced Raman Spectroscopy (SERS). In this work, we report an exhaustive study on the potential of large-scale (active area >1 [cm2]) Au nanodisks-based 2D PCs fabricated by single-beam Laser Interference Lithography (LIL) for high-performance SERS molecular sensing. This technique was used to fabricate periodic nanoarrays (period of 470 [nm]) of Au nanodisks with thicknesses from 50 up to 125 [nm]. The period was chosen following Finite-Difference Time-Domain (FDTD) simulations that suggested the best electric-near field enhancement for this condition. Confocal Raman microscopy and Methylene Blue (MB) as active Raman marker, were used to assess the samples´ performance for molecular sensing. SERS studies have shown that the nanodisks´ thickness can be a considerable size parameter for the Raman signal amplification, observing higher signal enhancements for higher thicknesses. The observed thickness effects on the Raman signal enhancement were consistent with FDTD simulations, which predicted higher electric-near field amplifications for higher thickness within the red/near-infrared range. Results show that our PCs enable to measure the characteristic Raman footprint of the analyte with good spectral resolution using relatively low powers (0.04–1 [mW]) and short acquisition times (1–30 [s]), considering an MB surface mass density as low as 2.6 [ng/cm2]. SERS enhancement factors as high as 2 x 107 were achieved for PCs with the highest thickness, representing a competitive performance concerning typically reported values (104–107) for current noble metal-based PCs technologies and a new record concerning PCs fabricated by LIL (104–105). This research demonstrates the high competitivity of these simple Au nanodisks-based 2D PCs, fabricated using an efficient large-scale and low-cost lithography technique, for fast, high spectral resolution and highly reproducible SERS-based molecular sensing. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/265829 Roa Díaz, Simón Andre; Redondo, Carolina; Akinoglu, Goekalp Engin; Pedano, Maria Laura; Maguregui, Maite; et al.; Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors; Elsevier; Materials Today Chemistry; 38; 6-2024; 1-12 2468-5194 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/265829 |
identifier_str_mv |
Roa Díaz, Simón Andre; Redondo, Carolina; Akinoglu, Goekalp Engin; Pedano, Maria Laura; Maguregui, Maite; et al.; Au nanodisks-based 2D photonic crystals fabricated by single-beam laser interference lithography: A simple and reliable alternative for highly efficient large-scale SERS molecular sensors; Elsevier; Materials Today Chemistry; 38; 6-2024; 1-12 2468-5194 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2468519424002076 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mtchem.2024.102101 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614243948691456 |
score |
13.070432 |