Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data
- Autores
- Wilson, Rory P.; Holton, Mark; Di Virgilio, Agustina Soledad; Williams, Hannah; Shepard, Emily L. C.; Lambertucci, Sergio Agustin; Quintana, Flavio Roberto; Sala, Juan Emilio; Balaji, Bharathan; Lee, Eun Sun; Srivastava, Mani; Scantlebury, D. Michael; Duarte, Carlos M.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The development of multisensor animal-attached tags, recording data at high frequencies, has enormous potential in allowing us to define animal behaviour. The high volumes of data, are pushing us towards machine-learning as a powerful option for distilling out behaviours. However, with increasing parallel lines of data, systems become more likely to become processor limited and thereby take appreciable amounts of time to resolve behaviours. We suggest a Boolean approach whereby critical changes in recorded parameters are used as sequential templates with defined flexibility (in both time and degree) to determine individual behavioural elements within a behavioural sequence that, together, makes up a single, defined behaviour. We tested this approach, and compared it to a suite of other behavioural identification methods, on a number of behaviours from tag-equipped animals; sheep grazing, penguins walking, cheetah stalking prey and condors thermalling. Overall behaviour recognition using our new approach was better than most other methods due to; (1) its ability to deal with behavioural variation and (2) the speed with which the task was completed because extraneous data are avoided in the process. We suggest that this approach is a promising way forward in an increasingly data-rich environment and that workers sharing algorithms can provide a powerful library for the benefit of all involved in such work.
Fil: Wilson, Rory P.. Swansea University; Reino Unido
Fil: Holton, Mark. Swansea University; Reino Unido
Fil: Di Virgilio, Agustina Soledad. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche; Argentina
Fil: Williams, Hannah. Swansea University; Reino Unido
Fil: Shepard, Emily L. C.. Swansea University; Reino Unido
Fil: Lambertucci, Sergio Agustin. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche; Argentina
Fil: Quintana, Flavio Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina
Fil: Sala, Juan Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina
Fil: Balaji, Bharathan. University of California at Los Angeles; Estados Unidos
Fil: Lee, Eun Sun. University of California at Los Angeles; Estados Unidos
Fil: Srivastava, Mani. University of California at Los Angeles; Estados Unidos
Fil: Scantlebury, D. Michael. The Queens University of Belfast; Irlanda
Fil: Duarte, Carlos M.. King Abdullah University Of Science And Technology; - Materia
-
ACCELEROMETER
BEHAVIOUR
BEHAVIOUR IDENTIFICATION
BIOINFORMATICS
SOFTWARE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/92683
Ver los metadatos del registro completo
id |
CONICETDig_70a6520ce90e8ee621a5608ef2581dba |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/92683 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor dataWilson, Rory P.Holton, MarkDi Virgilio, Agustina SoledadWilliams, HannahShepard, Emily L. C.Lambertucci, Sergio AgustinQuintana, Flavio RobertoSala, Juan EmilioBalaji, BharathanLee, Eun SunSrivastava, ManiScantlebury, D. MichaelDuarte, Carlos M.ACCELEROMETERBEHAVIOURBEHAVIOUR IDENTIFICATIONBIOINFORMATICSSOFTWAREhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The development of multisensor animal-attached tags, recording data at high frequencies, has enormous potential in allowing us to define animal behaviour. The high volumes of data, are pushing us towards machine-learning as a powerful option for distilling out behaviours. However, with increasing parallel lines of data, systems become more likely to become processor limited and thereby take appreciable amounts of time to resolve behaviours. We suggest a Boolean approach whereby critical changes in recorded parameters are used as sequential templates with defined flexibility (in both time and degree) to determine individual behavioural elements within a behavioural sequence that, together, makes up a single, defined behaviour. We tested this approach, and compared it to a suite of other behavioural identification methods, on a number of behaviours from tag-equipped animals; sheep grazing, penguins walking, cheetah stalking prey and condors thermalling. Overall behaviour recognition using our new approach was better than most other methods due to; (1) its ability to deal with behavioural variation and (2) the speed with which the task was completed because extraneous data are avoided in the process. We suggest that this approach is a promising way forward in an increasingly data-rich environment and that workers sharing algorithms can provide a powerful library for the benefit of all involved in such work.Fil: Wilson, Rory P.. Swansea University; Reino UnidoFil: Holton, Mark. Swansea University; Reino UnidoFil: Di Virgilio, Agustina Soledad. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche; ArgentinaFil: Williams, Hannah. Swansea University; Reino UnidoFil: Shepard, Emily L. C.. Swansea University; Reino UnidoFil: Lambertucci, Sergio Agustin. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche; ArgentinaFil: Quintana, Flavio Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; ArgentinaFil: Sala, Juan Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; ArgentinaFil: Balaji, Bharathan. University of California at Los Angeles; Estados UnidosFil: Lee, Eun Sun. University of California at Los Angeles; Estados UnidosFil: Srivastava, Mani. University of California at Los Angeles; Estados UnidosFil: Scantlebury, D. Michael. The Queens University of Belfast; IrlandaFil: Duarte, Carlos M.. King Abdullah University Of Science And Technology;British Ecological Society2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92683Wilson, Rory P.; Holton, Mark; Di Virgilio, Agustina Soledad; Williams, Hannah; Shepard, Emily L. C.; et al.; Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data; British Ecological Society; Methods in Ecology and Evolution; 9; 11; 11-2018; 2206-22152041-210XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/2041-210X.13069info:eu-repo/semantics/altIdentifier/url/https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.13069info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:51Zoai:ri.conicet.gov.ar:11336/92683instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:51.949CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data |
title |
Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data |
spellingShingle |
Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data Wilson, Rory P. ACCELEROMETER BEHAVIOUR BEHAVIOUR IDENTIFICATION BIOINFORMATICS SOFTWARE |
title_short |
Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data |
title_full |
Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data |
title_fullStr |
Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data |
title_full_unstemmed |
Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data |
title_sort |
Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data |
dc.creator.none.fl_str_mv |
Wilson, Rory P. Holton, Mark Di Virgilio, Agustina Soledad Williams, Hannah Shepard, Emily L. C. Lambertucci, Sergio Agustin Quintana, Flavio Roberto Sala, Juan Emilio Balaji, Bharathan Lee, Eun Sun Srivastava, Mani Scantlebury, D. Michael Duarte, Carlos M. |
author |
Wilson, Rory P. |
author_facet |
Wilson, Rory P. Holton, Mark Di Virgilio, Agustina Soledad Williams, Hannah Shepard, Emily L. C. Lambertucci, Sergio Agustin Quintana, Flavio Roberto Sala, Juan Emilio Balaji, Bharathan Lee, Eun Sun Srivastava, Mani Scantlebury, D. Michael Duarte, Carlos M. |
author_role |
author |
author2 |
Holton, Mark Di Virgilio, Agustina Soledad Williams, Hannah Shepard, Emily L. C. Lambertucci, Sergio Agustin Quintana, Flavio Roberto Sala, Juan Emilio Balaji, Bharathan Lee, Eun Sun Srivastava, Mani Scantlebury, D. Michael Duarte, Carlos M. |
author2_role |
author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
ACCELEROMETER BEHAVIOUR BEHAVIOUR IDENTIFICATION BIOINFORMATICS SOFTWARE |
topic |
ACCELEROMETER BEHAVIOUR BEHAVIOUR IDENTIFICATION BIOINFORMATICS SOFTWARE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The development of multisensor animal-attached tags, recording data at high frequencies, has enormous potential in allowing us to define animal behaviour. The high volumes of data, are pushing us towards machine-learning as a powerful option for distilling out behaviours. However, with increasing parallel lines of data, systems become more likely to become processor limited and thereby take appreciable amounts of time to resolve behaviours. We suggest a Boolean approach whereby critical changes in recorded parameters are used as sequential templates with defined flexibility (in both time and degree) to determine individual behavioural elements within a behavioural sequence that, together, makes up a single, defined behaviour. We tested this approach, and compared it to a suite of other behavioural identification methods, on a number of behaviours from tag-equipped animals; sheep grazing, penguins walking, cheetah stalking prey and condors thermalling. Overall behaviour recognition using our new approach was better than most other methods due to; (1) its ability to deal with behavioural variation and (2) the speed with which the task was completed because extraneous data are avoided in the process. We suggest that this approach is a promising way forward in an increasingly data-rich environment and that workers sharing algorithms can provide a powerful library for the benefit of all involved in such work. Fil: Wilson, Rory P.. Swansea University; Reino Unido Fil: Holton, Mark. Swansea University; Reino Unido Fil: Di Virgilio, Agustina Soledad. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche; Argentina Fil: Williams, Hannah. Swansea University; Reino Unido Fil: Shepard, Emily L. C.. Swansea University; Reino Unido Fil: Lambertucci, Sergio Agustin. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche; Argentina Fil: Quintana, Flavio Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina Fil: Sala, Juan Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina Fil: Balaji, Bharathan. University of California at Los Angeles; Estados Unidos Fil: Lee, Eun Sun. University of California at Los Angeles; Estados Unidos Fil: Srivastava, Mani. University of California at Los Angeles; Estados Unidos Fil: Scantlebury, D. Michael. The Queens University of Belfast; Irlanda Fil: Duarte, Carlos M.. King Abdullah University Of Science And Technology; |
description |
The development of multisensor animal-attached tags, recording data at high frequencies, has enormous potential in allowing us to define animal behaviour. The high volumes of data, are pushing us towards machine-learning as a powerful option for distilling out behaviours. However, with increasing parallel lines of data, systems become more likely to become processor limited and thereby take appreciable amounts of time to resolve behaviours. We suggest a Boolean approach whereby critical changes in recorded parameters are used as sequential templates with defined flexibility (in both time and degree) to determine individual behavioural elements within a behavioural sequence that, together, makes up a single, defined behaviour. We tested this approach, and compared it to a suite of other behavioural identification methods, on a number of behaviours from tag-equipped animals; sheep grazing, penguins walking, cheetah stalking prey and condors thermalling. Overall behaviour recognition using our new approach was better than most other methods due to; (1) its ability to deal with behavioural variation and (2) the speed with which the task was completed because extraneous data are avoided in the process. We suggest that this approach is a promising way forward in an increasingly data-rich environment and that workers sharing algorithms can provide a powerful library for the benefit of all involved in such work. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/92683 Wilson, Rory P.; Holton, Mark; Di Virgilio, Agustina Soledad; Williams, Hannah; Shepard, Emily L. C.; et al.; Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data; British Ecological Society; Methods in Ecology and Evolution; 9; 11; 11-2018; 2206-2215 2041-210X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/92683 |
identifier_str_mv |
Wilson, Rory P.; Holton, Mark; Di Virgilio, Agustina Soledad; Williams, Hannah; Shepard, Emily L. C.; et al.; Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data; British Ecological Society; Methods in Ecology and Evolution; 9; 11; 11-2018; 2206-2215 2041-210X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1111/2041-210X.13069 info:eu-repo/semantics/altIdentifier/url/https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.13069 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
British Ecological Society |
publisher.none.fl_str_mv |
British Ecological Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613120872415232 |
score |
13.070432 |