Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data

Autores
Wilson, Rory P.; Holton, Mark; Di Virgilio, Agustina Soledad; Williams, Hannah; Shepard, Emily L. C.; Lambertucci, Sergio Agustin; Quintana, Flavio Roberto; Sala, Juan Emilio; Balaji, Bharathan; Lee, Eun Sun; Srivastava, Mani; Scantlebury, D. Michael; Duarte, Carlos M.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The development of multisensor animal-attached tags, recording data at high frequencies, has enormous potential in allowing us to define animal behaviour. The high volumes of data, are pushing us towards machine-learning as a powerful option for distilling out behaviours. However, with increasing parallel lines of data, systems become more likely to become processor limited and thereby take appreciable amounts of time to resolve behaviours. We suggest a Boolean approach whereby critical changes in recorded parameters are used as sequential templates with defined flexibility (in both time and degree) to determine individual behavioural elements within a behavioural sequence that, together, makes up a single, defined behaviour. We tested this approach, and compared it to a suite of other behavioural identification methods, on a number of behaviours from tag-equipped animals; sheep grazing, penguins walking, cheetah stalking prey and condors thermalling. Overall behaviour recognition using our new approach was better than most other methods due to; (1) its ability to deal with behavioural variation and (2) the speed with which the task was completed because extraneous data are avoided in the process. We suggest that this approach is a promising way forward in an increasingly data-rich environment and that workers sharing algorithms can provide a powerful library for the benefit of all involved in such work.
Fil: Wilson, Rory P.. Swansea University; Reino Unido
Fil: Holton, Mark. Swansea University; Reino Unido
Fil: Di Virgilio, Agustina Soledad. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche; Argentina
Fil: Williams, Hannah. Swansea University; Reino Unido
Fil: Shepard, Emily L. C.. Swansea University; Reino Unido
Fil: Lambertucci, Sergio Agustin. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche; Argentina
Fil: Quintana, Flavio Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina
Fil: Sala, Juan Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina
Fil: Balaji, Bharathan. University of California at Los Angeles; Estados Unidos
Fil: Lee, Eun Sun. University of California at Los Angeles; Estados Unidos
Fil: Srivastava, Mani. University of California at Los Angeles; Estados Unidos
Fil: Scantlebury, D. Michael. The Queens University of Belfast; Irlanda
Fil: Duarte, Carlos M.. King Abdullah University Of Science And Technology;
Materia
ACCELEROMETER
BEHAVIOUR
BEHAVIOUR IDENTIFICATION
BIOINFORMATICS
SOFTWARE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/92683

id CONICETDig_70a6520ce90e8ee621a5608ef2581dba
oai_identifier_str oai:ri.conicet.gov.ar:11336/92683
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor dataWilson, Rory P.Holton, MarkDi Virgilio, Agustina SoledadWilliams, HannahShepard, Emily L. C.Lambertucci, Sergio AgustinQuintana, Flavio RobertoSala, Juan EmilioBalaji, BharathanLee, Eun SunSrivastava, ManiScantlebury, D. MichaelDuarte, Carlos M.ACCELEROMETERBEHAVIOURBEHAVIOUR IDENTIFICATIONBIOINFORMATICSSOFTWAREhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The development of multisensor animal-attached tags, recording data at high frequencies, has enormous potential in allowing us to define animal behaviour. The high volumes of data, are pushing us towards machine-learning as a powerful option for distilling out behaviours. However, with increasing parallel lines of data, systems become more likely to become processor limited and thereby take appreciable amounts of time to resolve behaviours. We suggest a Boolean approach whereby critical changes in recorded parameters are used as sequential templates with defined flexibility (in both time and degree) to determine individual behavioural elements within a behavioural sequence that, together, makes up a single, defined behaviour. We tested this approach, and compared it to a suite of other behavioural identification methods, on a number of behaviours from tag-equipped animals; sheep grazing, penguins walking, cheetah stalking prey and condors thermalling. Overall behaviour recognition using our new approach was better than most other methods due to; (1) its ability to deal with behavioural variation and (2) the speed with which the task was completed because extraneous data are avoided in the process. We suggest that this approach is a promising way forward in an increasingly data-rich environment and that workers sharing algorithms can provide a powerful library for the benefit of all involved in such work.Fil: Wilson, Rory P.. Swansea University; Reino UnidoFil: Holton, Mark. Swansea University; Reino UnidoFil: Di Virgilio, Agustina Soledad. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche; ArgentinaFil: Williams, Hannah. Swansea University; Reino UnidoFil: Shepard, Emily L. C.. Swansea University; Reino UnidoFil: Lambertucci, Sergio Agustin. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche; ArgentinaFil: Quintana, Flavio Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; ArgentinaFil: Sala, Juan Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; ArgentinaFil: Balaji, Bharathan. University of California at Los Angeles; Estados UnidosFil: Lee, Eun Sun. University of California at Los Angeles; Estados UnidosFil: Srivastava, Mani. University of California at Los Angeles; Estados UnidosFil: Scantlebury, D. Michael. The Queens University of Belfast; IrlandaFil: Duarte, Carlos M.. King Abdullah University Of Science And Technology;British Ecological Society2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92683Wilson, Rory P.; Holton, Mark; Di Virgilio, Agustina Soledad; Williams, Hannah; Shepard, Emily L. C.; et al.; Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data; British Ecological Society; Methods in Ecology and Evolution; 9; 11; 11-2018; 2206-22152041-210XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/2041-210X.13069info:eu-repo/semantics/altIdentifier/url/https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.13069info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:51Zoai:ri.conicet.gov.ar:11336/92683instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:51.949CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data
title Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data
spellingShingle Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data
Wilson, Rory P.
ACCELEROMETER
BEHAVIOUR
BEHAVIOUR IDENTIFICATION
BIOINFORMATICS
SOFTWARE
title_short Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data
title_full Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data
title_fullStr Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data
title_full_unstemmed Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data
title_sort Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data
dc.creator.none.fl_str_mv Wilson, Rory P.
Holton, Mark
Di Virgilio, Agustina Soledad
Williams, Hannah
Shepard, Emily L. C.
Lambertucci, Sergio Agustin
Quintana, Flavio Roberto
Sala, Juan Emilio
Balaji, Bharathan
Lee, Eun Sun
Srivastava, Mani
Scantlebury, D. Michael
Duarte, Carlos M.
author Wilson, Rory P.
author_facet Wilson, Rory P.
Holton, Mark
Di Virgilio, Agustina Soledad
Williams, Hannah
Shepard, Emily L. C.
Lambertucci, Sergio Agustin
Quintana, Flavio Roberto
Sala, Juan Emilio
Balaji, Bharathan
Lee, Eun Sun
Srivastava, Mani
Scantlebury, D. Michael
Duarte, Carlos M.
author_role author
author2 Holton, Mark
Di Virgilio, Agustina Soledad
Williams, Hannah
Shepard, Emily L. C.
Lambertucci, Sergio Agustin
Quintana, Flavio Roberto
Sala, Juan Emilio
Balaji, Bharathan
Lee, Eun Sun
Srivastava, Mani
Scantlebury, D. Michael
Duarte, Carlos M.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv ACCELEROMETER
BEHAVIOUR
BEHAVIOUR IDENTIFICATION
BIOINFORMATICS
SOFTWARE
topic ACCELEROMETER
BEHAVIOUR
BEHAVIOUR IDENTIFICATION
BIOINFORMATICS
SOFTWARE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The development of multisensor animal-attached tags, recording data at high frequencies, has enormous potential in allowing us to define animal behaviour. The high volumes of data, are pushing us towards machine-learning as a powerful option for distilling out behaviours. However, with increasing parallel lines of data, systems become more likely to become processor limited and thereby take appreciable amounts of time to resolve behaviours. We suggest a Boolean approach whereby critical changes in recorded parameters are used as sequential templates with defined flexibility (in both time and degree) to determine individual behavioural elements within a behavioural sequence that, together, makes up a single, defined behaviour. We tested this approach, and compared it to a suite of other behavioural identification methods, on a number of behaviours from tag-equipped animals; sheep grazing, penguins walking, cheetah stalking prey and condors thermalling. Overall behaviour recognition using our new approach was better than most other methods due to; (1) its ability to deal with behavioural variation and (2) the speed with which the task was completed because extraneous data are avoided in the process. We suggest that this approach is a promising way forward in an increasingly data-rich environment and that workers sharing algorithms can provide a powerful library for the benefit of all involved in such work.
Fil: Wilson, Rory P.. Swansea University; Reino Unido
Fil: Holton, Mark. Swansea University; Reino Unido
Fil: Di Virgilio, Agustina Soledad. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche; Argentina
Fil: Williams, Hannah. Swansea University; Reino Unido
Fil: Shepard, Emily L. C.. Swansea University; Reino Unido
Fil: Lambertucci, Sergio Agustin. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche; Argentina
Fil: Quintana, Flavio Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina
Fil: Sala, Juan Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina
Fil: Balaji, Bharathan. University of California at Los Angeles; Estados Unidos
Fil: Lee, Eun Sun. University of California at Los Angeles; Estados Unidos
Fil: Srivastava, Mani. University of California at Los Angeles; Estados Unidos
Fil: Scantlebury, D. Michael. The Queens University of Belfast; Irlanda
Fil: Duarte, Carlos M.. King Abdullah University Of Science And Technology;
description The development of multisensor animal-attached tags, recording data at high frequencies, has enormous potential in allowing us to define animal behaviour. The high volumes of data, are pushing us towards machine-learning as a powerful option for distilling out behaviours. However, with increasing parallel lines of data, systems become more likely to become processor limited and thereby take appreciable amounts of time to resolve behaviours. We suggest a Boolean approach whereby critical changes in recorded parameters are used as sequential templates with defined flexibility (in both time and degree) to determine individual behavioural elements within a behavioural sequence that, together, makes up a single, defined behaviour. We tested this approach, and compared it to a suite of other behavioural identification methods, on a number of behaviours from tag-equipped animals; sheep grazing, penguins walking, cheetah stalking prey and condors thermalling. Overall behaviour recognition using our new approach was better than most other methods due to; (1) its ability to deal with behavioural variation and (2) the speed with which the task was completed because extraneous data are avoided in the process. We suggest that this approach is a promising way forward in an increasingly data-rich environment and that workers sharing algorithms can provide a powerful library for the benefit of all involved in such work.
publishDate 2018
dc.date.none.fl_str_mv 2018-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/92683
Wilson, Rory P.; Holton, Mark; Di Virgilio, Agustina Soledad; Williams, Hannah; Shepard, Emily L. C.; et al.; Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data; British Ecological Society; Methods in Ecology and Evolution; 9; 11; 11-2018; 2206-2215
2041-210X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/92683
identifier_str_mv Wilson, Rory P.; Holton, Mark; Di Virgilio, Agustina Soledad; Williams, Hannah; Shepard, Emily L. C.; et al.; Give the machine a hand: A Boolean time-based decision-tree template for rapidly finding animal behaviours in multisensor data; British Ecological Society; Methods in Ecology and Evolution; 9; 11; 11-2018; 2206-2215
2041-210X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1111/2041-210X.13069
info:eu-repo/semantics/altIdentifier/url/https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.13069
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv British Ecological Society
publisher.none.fl_str_mv British Ecological Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613120872415232
score 13.070432