An integer programming approach for the time-dependent TSP

Autores
Miranda Bront, Juan Jose; Méndez Díaz, Isabel; Zabala, Paula Lorena
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Time-Dependent Travelling Salesman Problem (TDTSP) is a generalization of the traditional TSP where the travel cost between two cities depends on the moment of the day the arc is travelled. In this paper, we focus on the case where the travel time between two cities depends not only on the distance between them, but also on the position of the arc in the tour. We consider the formulations proposed in Picard and Queryanne [8] and Vander Wiel and Sahinidis [10], analyze the relationship between them and derive some valid inequalities and facets. Computational results are also presented for a Branch and Cut algorithm (B&C)that uses these inequalities, which showed to be very effective.
Fil: Miranda Bront, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Méndez Díaz, Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Zabala, Paula Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Tdtsp
Combinatorial Optimization
Branch And Cut
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/16566

id CONICETDig_7036ebfb8dbd6410712bccda3238551f
oai_identifier_str oai:ri.conicet.gov.ar:11336/16566
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An integer programming approach for the time-dependent TSPMiranda Bront, Juan JoseMéndez Díaz, IsabelZabala, Paula LorenaTdtspCombinatorial OptimizationBranch And Cuthttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The Time-Dependent Travelling Salesman Problem (TDTSP) is a generalization of the traditional TSP where the travel cost between two cities depends on the moment of the day the arc is travelled. In this paper, we focus on the case where the travel time between two cities depends not only on the distance between them, but also on the position of the arc in the tour. We consider the formulations proposed in Picard and Queryanne [8] and Vander Wiel and Sahinidis [10], analyze the relationship between them and derive some valid inequalities and facets. Computational results are also presented for a Branch and Cut algorithm (B&C)that uses these inequalities, which showed to be very effective.Fil: Miranda Bront, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Méndez Díaz, Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Zabala, Paula Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2010-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16566Miranda Bront, Juan Jose; Méndez Díaz, Isabel; Zabala, Paula Lorena; An integer programming approach for the time-dependent TSP; Elsevier; Electronic Notes In Discrete Mathematics; 36; 8-2010; 351-3581571-0653enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.endm.2010.05.045info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1571065310000466?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:36Zoai:ri.conicet.gov.ar:11336/16566instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:36.914CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An integer programming approach for the time-dependent TSP
title An integer programming approach for the time-dependent TSP
spellingShingle An integer programming approach for the time-dependent TSP
Miranda Bront, Juan Jose
Tdtsp
Combinatorial Optimization
Branch And Cut
title_short An integer programming approach for the time-dependent TSP
title_full An integer programming approach for the time-dependent TSP
title_fullStr An integer programming approach for the time-dependent TSP
title_full_unstemmed An integer programming approach for the time-dependent TSP
title_sort An integer programming approach for the time-dependent TSP
dc.creator.none.fl_str_mv Miranda Bront, Juan Jose
Méndez Díaz, Isabel
Zabala, Paula Lorena
author Miranda Bront, Juan Jose
author_facet Miranda Bront, Juan Jose
Méndez Díaz, Isabel
Zabala, Paula Lorena
author_role author
author2 Méndez Díaz, Isabel
Zabala, Paula Lorena
author2_role author
author
dc.subject.none.fl_str_mv Tdtsp
Combinatorial Optimization
Branch And Cut
topic Tdtsp
Combinatorial Optimization
Branch And Cut
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The Time-Dependent Travelling Salesman Problem (TDTSP) is a generalization of the traditional TSP where the travel cost between two cities depends on the moment of the day the arc is travelled. In this paper, we focus on the case where the travel time between two cities depends not only on the distance between them, but also on the position of the arc in the tour. We consider the formulations proposed in Picard and Queryanne [8] and Vander Wiel and Sahinidis [10], analyze the relationship between them and derive some valid inequalities and facets. Computational results are also presented for a Branch and Cut algorithm (B&C)that uses these inequalities, which showed to be very effective.
Fil: Miranda Bront, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Méndez Díaz, Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Zabala, Paula Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The Time-Dependent Travelling Salesman Problem (TDTSP) is a generalization of the traditional TSP where the travel cost between two cities depends on the moment of the day the arc is travelled. In this paper, we focus on the case where the travel time between two cities depends not only on the distance between them, but also on the position of the arc in the tour. We consider the formulations proposed in Picard and Queryanne [8] and Vander Wiel and Sahinidis [10], analyze the relationship between them and derive some valid inequalities and facets. Computational results are also presented for a Branch and Cut algorithm (B&C)that uses these inequalities, which showed to be very effective.
publishDate 2010
dc.date.none.fl_str_mv 2010-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/16566
Miranda Bront, Juan Jose; Méndez Díaz, Isabel; Zabala, Paula Lorena; An integer programming approach for the time-dependent TSP; Elsevier; Electronic Notes In Discrete Mathematics; 36; 8-2010; 351-358
1571-0653
url http://hdl.handle.net/11336/16566
identifier_str_mv Miranda Bront, Juan Jose; Méndez Díaz, Isabel; Zabala, Paula Lorena; An integer programming approach for the time-dependent TSP; Elsevier; Electronic Notes In Discrete Mathematics; 36; 8-2010; 351-358
1571-0653
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.endm.2010.05.045
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1571065310000466?via%3Dihub
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269170465505280
score 13.13397