Ozone Exposure of a Weed Community Produces Adaptive Changes in Seed Populations of Spergula arvensis
- Autores
- Landesmann, Jennifer Brenda; Gundel, Pedro Emilio; Martinez Ghersa, M. Alejandra; Ghersa, Claudio Marco
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Tropospheric ozone is one of the major drivers of global change. This stress factor alters plant growth and development. Ozone could act as a selection pressure on species communities composition, but also on population genetic background, thus affecting life history traits. Our objective was to evaluate the consequences of prolonged ozone exposure of a weed community on phenotypic traits of Spergula arvensis linked to persistence. Specifically, we predicted that the selection pressure exerted by high ozone concentrations as well as the concomitant changes in the weed community would drive population adaptive changes which will be reflected on seed germination, dormancy and longevity. In order to test seed viability and dormancy level, we conducted germination experiments for which we used seeds produced by S. arvensis plants grown within a weed community exposed to three ozone treatments during four years (0, 90 and 120 ppb). We also performed a soil seed bank experiment to test seed longevity with seeds coming from both the four-year ozone exposure experiment and from a short-term treatment conducted at ambient and added ozone concentrations. We found that prolonged ozone exposure produced changes in seed germination, dormancy and longevity, resulting in three S. arvensis populations. Seeds from the 90 ppb ozone selection treatment had the highest level of germination when stored at 75% RH and 25 °C and then scarified. These seeds showed the lowest dormancy level when being subjected to 5 ºC/5% RH and 25 ºC/75% followed by 5% RH storage conditions. Furthermore, ozone exposure increased seed persistence in the soil through a maternal effect. Given that tropospheric ozone is an important pollutant in rural areas, changes in seed traits due to ozone exposure could increase weed persistence in fields, thus affecting weed-crop interactions, which could ultimately reduce crop production.
Fil: Landesmann, Jennifer Brenda. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol.conicet - Patagonia Norte. Instituto de Invest.en Biodiversidad y Medioambiente;
Fil: Gundel, Pedro Emilio. Consejo Nacional de Invest.cientif.y Tecnicas. Oficina de Coordinacion Administrativa Pque. Centenario. Instituto D/inv.fisiologicas y Eco.vinculadas A L/agric;
Fil: Martinez Ghersa, M. Alejandra. Consejo Nacional de Invest.cientif.y Tecnicas. Oficina de Coordinacion Administrativa Pque. Centenario. Instituto D/inv.fisiologicas y Eco.vinculadas A L/agric;
Fil: Ghersa, Claudio Marco. Consejo Nacional de Invest.cientif.y Tecnicas. Oficina de Coordinacion Administrativa Pque. Centenario. Instituto D/inv.fisiologicas y Eco.vinculadas A L/agric; - Materia
-
TROPOSPHERIC OZONE
PERSISTENCE
GERMINATION
VIABILITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/551
Ver los metadatos del registro completo
id |
CONICETDig_6fda9e5ed11fa5d6b1d23042775ebc8e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/551 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Ozone Exposure of a Weed Community Produces Adaptive Changes in Seed Populations of Spergula arvensisLandesmann, Jennifer BrendaGundel, Pedro EmilioMartinez Ghersa, M. AlejandraGhersa, Claudio MarcoTROPOSPHERIC OZONEPERSISTENCEGERMINATIONVIABILITYhttps://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6Tropospheric ozone is one of the major drivers of global change. This stress factor alters plant growth and development. Ozone could act as a selection pressure on species communities composition, but also on population genetic background, thus affecting life history traits. Our objective was to evaluate the consequences of prolonged ozone exposure of a weed community on phenotypic traits of Spergula arvensis linked to persistence. Specifically, we predicted that the selection pressure exerted by high ozone concentrations as well as the concomitant changes in the weed community would drive population adaptive changes which will be reflected on seed germination, dormancy and longevity. In order to test seed viability and dormancy level, we conducted germination experiments for which we used seeds produced by S. arvensis plants grown within a weed community exposed to three ozone treatments during four years (0, 90 and 120 ppb). We also performed a soil seed bank experiment to test seed longevity with seeds coming from both the four-year ozone exposure experiment and from a short-term treatment conducted at ambient and added ozone concentrations. We found that prolonged ozone exposure produced changes in seed germination, dormancy and longevity, resulting in three S. arvensis populations. Seeds from the 90 ppb ozone selection treatment had the highest level of germination when stored at 75% RH and 25 °C and then scarified. These seeds showed the lowest dormancy level when being subjected to 5 ºC/5% RH and 25 ºC/75% followed by 5% RH storage conditions. Furthermore, ozone exposure increased seed persistence in the soil through a maternal effect. Given that tropospheric ozone is an important pollutant in rural areas, changes in seed traits due to ozone exposure could increase weed persistence in fields, thus affecting weed-crop interactions, which could ultimately reduce crop production.Fil: Landesmann, Jennifer Brenda. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol.conicet - Patagonia Norte. Instituto de Invest.en Biodiversidad y Medioambiente;Fil: Gundel, Pedro Emilio. Consejo Nacional de Invest.cientif.y Tecnicas. Oficina de Coordinacion Administrativa Pque. Centenario. Instituto D/inv.fisiologicas y Eco.vinculadas A L/agric;Fil: Martinez Ghersa, M. Alejandra. Consejo Nacional de Invest.cientif.y Tecnicas. Oficina de Coordinacion Administrativa Pque. Centenario. Instituto D/inv.fisiologicas y Eco.vinculadas A L/agric;Fil: Ghersa, Claudio Marco. Consejo Nacional de Invest.cientif.y Tecnicas. Oficina de Coordinacion Administrativa Pque. Centenario. Instituto D/inv.fisiologicas y Eco.vinculadas A L/agric;Public Library Science2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/551Landesmann, Jennifer Brenda; Gundel, Pedro Emilio; Martinez Ghersa, M. Alejandra; Ghersa, Claudio Marco; Ozone Exposure of a Weed Community Produces Adaptive Changes in Seed Populations of Spergula arvensis; Public Library Science; Plos One; 8; 9; 9-2013; 1-11;1932-6203enginfo:eu-repo/semantics/altIdentifier/url/http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0075820info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:45Zoai:ri.conicet.gov.ar:11336/551instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:45.579CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Ozone Exposure of a Weed Community Produces Adaptive Changes in Seed Populations of Spergula arvensis |
title |
Ozone Exposure of a Weed Community Produces Adaptive Changes in Seed Populations of Spergula arvensis |
spellingShingle |
Ozone Exposure of a Weed Community Produces Adaptive Changes in Seed Populations of Spergula arvensis Landesmann, Jennifer Brenda TROPOSPHERIC OZONE PERSISTENCE GERMINATION VIABILITY |
title_short |
Ozone Exposure of a Weed Community Produces Adaptive Changes in Seed Populations of Spergula arvensis |
title_full |
Ozone Exposure of a Weed Community Produces Adaptive Changes in Seed Populations of Spergula arvensis |
title_fullStr |
Ozone Exposure of a Weed Community Produces Adaptive Changes in Seed Populations of Spergula arvensis |
title_full_unstemmed |
Ozone Exposure of a Weed Community Produces Adaptive Changes in Seed Populations of Spergula arvensis |
title_sort |
Ozone Exposure of a Weed Community Produces Adaptive Changes in Seed Populations of Spergula arvensis |
dc.creator.none.fl_str_mv |
Landesmann, Jennifer Brenda Gundel, Pedro Emilio Martinez Ghersa, M. Alejandra Ghersa, Claudio Marco |
author |
Landesmann, Jennifer Brenda |
author_facet |
Landesmann, Jennifer Brenda Gundel, Pedro Emilio Martinez Ghersa, M. Alejandra Ghersa, Claudio Marco |
author_role |
author |
author2 |
Gundel, Pedro Emilio Martinez Ghersa, M. Alejandra Ghersa, Claudio Marco |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
TROPOSPHERIC OZONE PERSISTENCE GERMINATION VIABILITY |
topic |
TROPOSPHERIC OZONE PERSISTENCE GERMINATION VIABILITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.6 |
dc.description.none.fl_txt_mv |
Tropospheric ozone is one of the major drivers of global change. This stress factor alters plant growth and development. Ozone could act as a selection pressure on species communities composition, but also on population genetic background, thus affecting life history traits. Our objective was to evaluate the consequences of prolonged ozone exposure of a weed community on phenotypic traits of Spergula arvensis linked to persistence. Specifically, we predicted that the selection pressure exerted by high ozone concentrations as well as the concomitant changes in the weed community would drive population adaptive changes which will be reflected on seed germination, dormancy and longevity. In order to test seed viability and dormancy level, we conducted germination experiments for which we used seeds produced by S. arvensis plants grown within a weed community exposed to three ozone treatments during four years (0, 90 and 120 ppb). We also performed a soil seed bank experiment to test seed longevity with seeds coming from both the four-year ozone exposure experiment and from a short-term treatment conducted at ambient and added ozone concentrations. We found that prolonged ozone exposure produced changes in seed germination, dormancy and longevity, resulting in three S. arvensis populations. Seeds from the 90 ppb ozone selection treatment had the highest level of germination when stored at 75% RH and 25 °C and then scarified. These seeds showed the lowest dormancy level when being subjected to 5 ºC/5% RH and 25 ºC/75% followed by 5% RH storage conditions. Furthermore, ozone exposure increased seed persistence in the soil through a maternal effect. Given that tropospheric ozone is an important pollutant in rural areas, changes in seed traits due to ozone exposure could increase weed persistence in fields, thus affecting weed-crop interactions, which could ultimately reduce crop production. Fil: Landesmann, Jennifer Brenda. Consejo Nacional de Invest.cientif.y Tecnicas. Centro Cientifico Tecnol.conicet - Patagonia Norte. Instituto de Invest.en Biodiversidad y Medioambiente; Fil: Gundel, Pedro Emilio. Consejo Nacional de Invest.cientif.y Tecnicas. Oficina de Coordinacion Administrativa Pque. Centenario. Instituto D/inv.fisiologicas y Eco.vinculadas A L/agric; Fil: Martinez Ghersa, M. Alejandra. Consejo Nacional de Invest.cientif.y Tecnicas. Oficina de Coordinacion Administrativa Pque. Centenario. Instituto D/inv.fisiologicas y Eco.vinculadas A L/agric; Fil: Ghersa, Claudio Marco. Consejo Nacional de Invest.cientif.y Tecnicas. Oficina de Coordinacion Administrativa Pque. Centenario. Instituto D/inv.fisiologicas y Eco.vinculadas A L/agric; |
description |
Tropospheric ozone is one of the major drivers of global change. This stress factor alters plant growth and development. Ozone could act as a selection pressure on species communities composition, but also on population genetic background, thus affecting life history traits. Our objective was to evaluate the consequences of prolonged ozone exposure of a weed community on phenotypic traits of Spergula arvensis linked to persistence. Specifically, we predicted that the selection pressure exerted by high ozone concentrations as well as the concomitant changes in the weed community would drive population adaptive changes which will be reflected on seed germination, dormancy and longevity. In order to test seed viability and dormancy level, we conducted germination experiments for which we used seeds produced by S. arvensis plants grown within a weed community exposed to three ozone treatments during four years (0, 90 and 120 ppb). We also performed a soil seed bank experiment to test seed longevity with seeds coming from both the four-year ozone exposure experiment and from a short-term treatment conducted at ambient and added ozone concentrations. We found that prolonged ozone exposure produced changes in seed germination, dormancy and longevity, resulting in three S. arvensis populations. Seeds from the 90 ppb ozone selection treatment had the highest level of germination when stored at 75% RH and 25 °C and then scarified. These seeds showed the lowest dormancy level when being subjected to 5 ºC/5% RH and 25 ºC/75% followed by 5% RH storage conditions. Furthermore, ozone exposure increased seed persistence in the soil through a maternal effect. Given that tropospheric ozone is an important pollutant in rural areas, changes in seed traits due to ozone exposure could increase weed persistence in fields, thus affecting weed-crop interactions, which could ultimately reduce crop production. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/551 Landesmann, Jennifer Brenda; Gundel, Pedro Emilio; Martinez Ghersa, M. Alejandra; Ghersa, Claudio Marco; Ozone Exposure of a Weed Community Produces Adaptive Changes in Seed Populations of Spergula arvensis; Public Library Science; Plos One; 8; 9; 9-2013; 1-11; 1932-6203 |
url |
http://hdl.handle.net/11336/551 |
identifier_str_mv |
Landesmann, Jennifer Brenda; Gundel, Pedro Emilio; Martinez Ghersa, M. Alejandra; Ghersa, Claudio Marco; Ozone Exposure of a Weed Community Produces Adaptive Changes in Seed Populations of Spergula arvensis; Public Library Science; Plos One; 8; 9; 9-2013; 1-11; 1932-6203 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0075820 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Public Library Science |
publisher.none.fl_str_mv |
Public Library Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613039536472064 |
score |
13.070432 |