The principle of minimal episteric distortion of the water matrix and its role in protein folding

Autores
Fernandez, Ariel
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A significant episteric (around a solid) distortion of the hydrogen-bond structure of water is promoted by solutes with nanoscale surface detail and physico-chemical complexity, such as soluble natural proteins. These structural distortions defy analysis because the discrete nature of the solvent at the interface is not upheld by the continuous laws of electrostatics. This work derives and validates an electrostatic equation that governs the episteric distortions of the hydrogen-bond matrix. The equation correlates distortions from bulk-like structural patterns with anomalous polarization components that do not align with the electrostatic field of the solute. The result implies that the interfacial energy stored in the orthogonal polarization correlates with the distortion of the water hydrogen-bond network. The result is validated vis-à-vis experimental data on protein interfacial thermodynamics and is interpreted in terms of the interaction energy between the electrostatic field of the solute and the dipole moment induced by the anomalous polarization of interfacial water.Finally, we consider solutes capable of changing their interface through conformational transitions and introduce a principle of minimal episteric distortion (MED) of the water matrix. We assess the importance of the MED principle in the context of protein folding, concluding that the native fold may be identified topologically with the conformation that minimizes the interfacial tension or disruption of the water matrix.
Fil: Fernandez, Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina
Materia
Episteric tension
protein folding
dehydron
interfacial tension
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/3365

id CONICETDig_6fd416ff72895ed096f388fad3f7118a
oai_identifier_str oai:ri.conicet.gov.ar:11336/3365
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The principle of minimal episteric distortion of the water matrix and its role in protein foldingFernandez, ArielEpisteric tensionprotein foldingdehydroninterfacial tensionhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A significant episteric (around a solid) distortion of the hydrogen-bond structure of water is promoted by solutes with nanoscale surface detail and physico-chemical complexity, such as soluble natural proteins. These structural distortions defy analysis because the discrete nature of the solvent at the interface is not upheld by the continuous laws of electrostatics. This work derives and validates an electrostatic equation that governs the episteric distortions of the hydrogen-bond matrix. The equation correlates distortions from bulk-like structural patterns with anomalous polarization components that do not align with the electrostatic field of the solute. The result implies that the interfacial energy stored in the orthogonal polarization correlates with the distortion of the water hydrogen-bond network. The result is validated vis-à-vis experimental data on protein interfacial thermodynamics and is interpreted in terms of the interaction energy between the electrostatic field of the solute and the dipole moment induced by the anomalous polarization of interfacial water.Finally, we consider solutes capable of changing their interface through conformational transitions and introduce a principle of minimal episteric distortion (MED) of the water matrix. We assess the importance of the MED principle in the context of protein folding, concluding that the native fold may be identified topologically with the conformation that minimizes the interfacial tension or disruption of the water matrix.Fil: Fernandez, Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; ArgentinaAmerican Institute Of Physics2013-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3365Fernandez, Ariel; The principle of minimal episteric distortion of the water matrix and its role in protein folding; American Institute Of Physics; Journal Of Chemical Physics; 139; 8-2013; 85101-851010021-9606enginfo:eu-repo/semantics/altIdentifier/url/http://scitation.aip.org/content/aip/journal/jcp/139/8/10.1063/1.4818874info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4818874info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)https://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:47Zoai:ri.conicet.gov.ar:11336/3365instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:47.618CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The principle of minimal episteric distortion of the water matrix and its role in protein folding
title The principle of minimal episteric distortion of the water matrix and its role in protein folding
spellingShingle The principle of minimal episteric distortion of the water matrix and its role in protein folding
Fernandez, Ariel
Episteric tension
protein folding
dehydron
interfacial tension
title_short The principle of minimal episteric distortion of the water matrix and its role in protein folding
title_full The principle of minimal episteric distortion of the water matrix and its role in protein folding
title_fullStr The principle of minimal episteric distortion of the water matrix and its role in protein folding
title_full_unstemmed The principle of minimal episteric distortion of the water matrix and its role in protein folding
title_sort The principle of minimal episteric distortion of the water matrix and its role in protein folding
dc.creator.none.fl_str_mv Fernandez, Ariel
author Fernandez, Ariel
author_facet Fernandez, Ariel
author_role author
dc.subject.none.fl_str_mv Episteric tension
protein folding
dehydron
interfacial tension
topic Episteric tension
protein folding
dehydron
interfacial tension
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A significant episteric (around a solid) distortion of the hydrogen-bond structure of water is promoted by solutes with nanoscale surface detail and physico-chemical complexity, such as soluble natural proteins. These structural distortions defy analysis because the discrete nature of the solvent at the interface is not upheld by the continuous laws of electrostatics. This work derives and validates an electrostatic equation that governs the episteric distortions of the hydrogen-bond matrix. The equation correlates distortions from bulk-like structural patterns with anomalous polarization components that do not align with the electrostatic field of the solute. The result implies that the interfacial energy stored in the orthogonal polarization correlates with the distortion of the water hydrogen-bond network. The result is validated vis-à-vis experimental data on protein interfacial thermodynamics and is interpreted in terms of the interaction energy between the electrostatic field of the solute and the dipole moment induced by the anomalous polarization of interfacial water.Finally, we consider solutes capable of changing their interface through conformational transitions and introduce a principle of minimal episteric distortion (MED) of the water matrix. We assess the importance of the MED principle in the context of protein folding, concluding that the native fold may be identified topologically with the conformation that minimizes the interfacial tension or disruption of the water matrix.
Fil: Fernandez, Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina
description A significant episteric (around a solid) distortion of the hydrogen-bond structure of water is promoted by solutes with nanoscale surface detail and physico-chemical complexity, such as soluble natural proteins. These structural distortions defy analysis because the discrete nature of the solvent at the interface is not upheld by the continuous laws of electrostatics. This work derives and validates an electrostatic equation that governs the episteric distortions of the hydrogen-bond matrix. The equation correlates distortions from bulk-like structural patterns with anomalous polarization components that do not align with the electrostatic field of the solute. The result implies that the interfacial energy stored in the orthogonal polarization correlates with the distortion of the water hydrogen-bond network. The result is validated vis-à-vis experimental data on protein interfacial thermodynamics and is interpreted in terms of the interaction energy between the electrostatic field of the solute and the dipole moment induced by the anomalous polarization of interfacial water.Finally, we consider solutes capable of changing their interface through conformational transitions and introduce a principle of minimal episteric distortion (MED) of the water matrix. We assess the importance of the MED principle in the context of protein folding, concluding that the native fold may be identified topologically with the conformation that minimizes the interfacial tension or disruption of the water matrix.
publishDate 2013
dc.date.none.fl_str_mv 2013-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/3365
Fernandez, Ariel; The principle of minimal episteric distortion of the water matrix and its role in protein folding; American Institute Of Physics; Journal Of Chemical Physics; 139; 8-2013; 85101-85101
0021-9606
url http://hdl.handle.net/11336/3365
identifier_str_mv Fernandez, Ariel; The principle of minimal episteric distortion of the water matrix and its role in protein folding; American Institute Of Physics; Journal Of Chemical Physics; 139; 8-2013; 85101-85101
0021-9606
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://scitation.aip.org/content/aip/journal/jcp/139/8/10.1063/1.4818874
info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4818874
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 2.5 Argentina (CC BY-NC-SA 2.5 AR)
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute Of Physics
publisher.none.fl_str_mv American Institute Of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613347445571584
score 13.070432