A general framework to understand parallel performance in heterogeneous clusters: Analysis of a new adaptive parallel genetic algorithm
- Autores
- Bazterra, Victor E.; Cuma, Martin; Ferraro, Marta Beatriz; Facelli, Julio C.
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper presents a general model to define, measure and predict the efficiency of applications running on heterogeneous parallel computer systems. Using this framework, it is possible to understand the influence that the heterogeneity of the hardware has on the efficiency of an algorithm. This methodology is used to compare an existing parallel genetic algorithm with a new adaptive parallel model. All the performance measurements were taken in a loosely coupled cluster of processors. © 2004 Elsevier Inc. All rights reserved.
Fil: Bazterra, Victor E.. Universidad de Buenos Aires; Argentina. University of Utah; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cuma, Martin. University of Utah; Estados Unidos. Universidad de Buenos Aires; Argentina
Fil: Ferraro, Marta Beatriz. University of Utah; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Facelli, Julio C.. University of Utah; Estados Unidos. Universidad de Buenos Aires; Argentina - Materia
-
HETEROGENEOUS PARALLEL ENVIRONMENT
PARALLEL GENETIC ALGORITHMS
PERFORMANCE ANALYSIS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/73283
Ver los metadatos del registro completo
id |
CONICETDig_6fabc2e1ece53e6ef2615e80b6879b3b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/73283 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A general framework to understand parallel performance in heterogeneous clusters: Analysis of a new adaptive parallel genetic algorithmBazterra, Victor E.Cuma, MartinFerraro, Marta BeatrizFacelli, Julio C.HETEROGENEOUS PARALLEL ENVIRONMENTPARALLEL GENETIC ALGORITHMSPERFORMANCE ANALYSIShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1This paper presents a general model to define, measure and predict the efficiency of applications running on heterogeneous parallel computer systems. Using this framework, it is possible to understand the influence that the heterogeneity of the hardware has on the efficiency of an algorithm. This methodology is used to compare an existing parallel genetic algorithm with a new adaptive parallel model. All the performance measurements were taken in a loosely coupled cluster of processors. © 2004 Elsevier Inc. All rights reserved.Fil: Bazterra, Victor E.. Universidad de Buenos Aires; Argentina. University of Utah; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cuma, Martin. University of Utah; Estados Unidos. Universidad de Buenos Aires; ArgentinaFil: Ferraro, Marta Beatriz. University of Utah; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Facelli, Julio C.. University of Utah; Estados Unidos. Universidad de Buenos Aires; ArgentinaAcademic Press Inc Elsevier Science2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/73283Bazterra, Victor E.; Cuma, Martin; Ferraro, Marta Beatriz; Facelli, Julio C.; A general framework to understand parallel performance in heterogeneous clusters: Analysis of a new adaptive parallel genetic algorithm; Academic Press Inc Elsevier Science; Journal Of Parallel And Distributed Computing; 65; 1; 12-2005; 48-570743-7315CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpdc.2004.09.011info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0743731504001741info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:51Zoai:ri.conicet.gov.ar:11336/73283instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:51.723CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A general framework to understand parallel performance in heterogeneous clusters: Analysis of a new adaptive parallel genetic algorithm |
title |
A general framework to understand parallel performance in heterogeneous clusters: Analysis of a new adaptive parallel genetic algorithm |
spellingShingle |
A general framework to understand parallel performance in heterogeneous clusters: Analysis of a new adaptive parallel genetic algorithm Bazterra, Victor E. HETEROGENEOUS PARALLEL ENVIRONMENT PARALLEL GENETIC ALGORITHMS PERFORMANCE ANALYSIS |
title_short |
A general framework to understand parallel performance in heterogeneous clusters: Analysis of a new adaptive parallel genetic algorithm |
title_full |
A general framework to understand parallel performance in heterogeneous clusters: Analysis of a new adaptive parallel genetic algorithm |
title_fullStr |
A general framework to understand parallel performance in heterogeneous clusters: Analysis of a new adaptive parallel genetic algorithm |
title_full_unstemmed |
A general framework to understand parallel performance in heterogeneous clusters: Analysis of a new adaptive parallel genetic algorithm |
title_sort |
A general framework to understand parallel performance in heterogeneous clusters: Analysis of a new adaptive parallel genetic algorithm |
dc.creator.none.fl_str_mv |
Bazterra, Victor E. Cuma, Martin Ferraro, Marta Beatriz Facelli, Julio C. |
author |
Bazterra, Victor E. |
author_facet |
Bazterra, Victor E. Cuma, Martin Ferraro, Marta Beatriz Facelli, Julio C. |
author_role |
author |
author2 |
Cuma, Martin Ferraro, Marta Beatriz Facelli, Julio C. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
HETEROGENEOUS PARALLEL ENVIRONMENT PARALLEL GENETIC ALGORITHMS PERFORMANCE ANALYSIS |
topic |
HETEROGENEOUS PARALLEL ENVIRONMENT PARALLEL GENETIC ALGORITHMS PERFORMANCE ANALYSIS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper presents a general model to define, measure and predict the efficiency of applications running on heterogeneous parallel computer systems. Using this framework, it is possible to understand the influence that the heterogeneity of the hardware has on the efficiency of an algorithm. This methodology is used to compare an existing parallel genetic algorithm with a new adaptive parallel model. All the performance measurements were taken in a loosely coupled cluster of processors. © 2004 Elsevier Inc. All rights reserved. Fil: Bazterra, Victor E.. Universidad de Buenos Aires; Argentina. University of Utah; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Cuma, Martin. University of Utah; Estados Unidos. Universidad de Buenos Aires; Argentina Fil: Ferraro, Marta Beatriz. University of Utah; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Facelli, Julio C.. University of Utah; Estados Unidos. Universidad de Buenos Aires; Argentina |
description |
This paper presents a general model to define, measure and predict the efficiency of applications running on heterogeneous parallel computer systems. Using this framework, it is possible to understand the influence that the heterogeneity of the hardware has on the efficiency of an algorithm. This methodology is used to compare an existing parallel genetic algorithm with a new adaptive parallel model. All the performance measurements were taken in a loosely coupled cluster of processors. © 2004 Elsevier Inc. All rights reserved. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/73283 Bazterra, Victor E.; Cuma, Martin; Ferraro, Marta Beatriz; Facelli, Julio C.; A general framework to understand parallel performance in heterogeneous clusters: Analysis of a new adaptive parallel genetic algorithm; Academic Press Inc Elsevier Science; Journal Of Parallel And Distributed Computing; 65; 1; 12-2005; 48-57 0743-7315 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/73283 |
identifier_str_mv |
Bazterra, Victor E.; Cuma, Martin; Ferraro, Marta Beatriz; Facelli, Julio C.; A general framework to understand parallel performance in heterogeneous clusters: Analysis of a new adaptive parallel genetic algorithm; Academic Press Inc Elsevier Science; Journal Of Parallel And Distributed Computing; 65; 1; 12-2005; 48-57 0743-7315 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpdc.2004.09.011 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0743731504001741 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269311063818240 |
score |
13.13397 |