Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes

Autores
Setevich, Cristian F.; Larrondo, Susana Adelina
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this study, we propose and analyze a new resistor network model designed for the analysis of electrodes with mixed conductivity in solid oxide fuel cells (SOFCs). Resistor networks simulation for electrodes with mixed ionic and electronic conductivity oxides (MIEC) is not typically used due to the presence of oxygen ions and electrons as charge carriers. To address this complexity within the model, two resistor networks are employed. These networks conduct the different electrical species, and are linked through a resistor representing the charge transfer (CT) process. In the case of mixed-conducting electrodes, this CT occurs at the surface exposed to the gas phase. The electrode simulated in this study is generated using the discrete element method of random sphere insertion, and subsequently voxelized to create the resistor network. This method considers the geometric and microstructural parameters of the electrode, such as porosity, particle size, and electrode thickness. Electrical parameters are incorporated into the network through the values of the various conductivities characterizing MIEC oxides and including CT interface conductivities. By integrating geometric, microstructural, and electrical parameters, the model accurately captures the behavior of the electrodes. The close agreement between simulation and experimental/theoretical results highlights the efficacy of the approach in elucidating the electrochemical processes occurring at the MIEC electrode.
Fil: Setevich, Cristian F.. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Fil: Larrondo, Susana Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina. Universidad Nacional de San Martín; Argentina
Materia
sofc
resistor networks
miec
simulation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/257178

id CONICETDig_6ed4e458b177b2e8852ae2cf7419c409
oai_identifier_str oai:ri.conicet.gov.ar:11336/257178
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodesSetevich, Cristian F.Larrondo, Susana Adelinasofcresistor networksmiecsimulationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this study, we propose and analyze a new resistor network model designed for the analysis of electrodes with mixed conductivity in solid oxide fuel cells (SOFCs). Resistor networks simulation for electrodes with mixed ionic and electronic conductivity oxides (MIEC) is not typically used due to the presence of oxygen ions and electrons as charge carriers. To address this complexity within the model, two resistor networks are employed. These networks conduct the different electrical species, and are linked through a resistor representing the charge transfer (CT) process. In the case of mixed-conducting electrodes, this CT occurs at the surface exposed to the gas phase. The electrode simulated in this study is generated using the discrete element method of random sphere insertion, and subsequently voxelized to create the resistor network. This method considers the geometric and microstructural parameters of the electrode, such as porosity, particle size, and electrode thickness. Electrical parameters are incorporated into the network through the values of the various conductivities characterizing MIEC oxides and including CT interface conductivities. By integrating geometric, microstructural, and electrical parameters, the model accurately captures the behavior of the electrodes. The close agreement between simulation and experimental/theoretical results highlights the efficacy of the approach in elucidating the electrochemical processes occurring at the MIEC electrode.Fil: Setevich, Cristian F.. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; ArgentinaFil: Larrondo, Susana Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina. Universidad Nacional de San Martín; ArgentinaElsevier2024-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/257178Setevich, Cristian F.; Larrondo, Susana Adelina; Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes; Elsevier; Materials Today Communications; 39; 5-2024; 1-212352-4928CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2352492824012406info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mtcomm.2024.109259info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:12:13Zoai:ri.conicet.gov.ar:11336/257178instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:12:13.681CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes
title Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes
spellingShingle Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes
Setevich, Cristian F.
sofc
resistor networks
miec
simulation
title_short Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes
title_full Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes
title_fullStr Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes
title_full_unstemmed Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes
title_sort Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes
dc.creator.none.fl_str_mv Setevich, Cristian F.
Larrondo, Susana Adelina
author Setevich, Cristian F.
author_facet Setevich, Cristian F.
Larrondo, Susana Adelina
author_role author
author2 Larrondo, Susana Adelina
author2_role author
dc.subject.none.fl_str_mv sofc
resistor networks
miec
simulation
topic sofc
resistor networks
miec
simulation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this study, we propose and analyze a new resistor network model designed for the analysis of electrodes with mixed conductivity in solid oxide fuel cells (SOFCs). Resistor networks simulation for electrodes with mixed ionic and electronic conductivity oxides (MIEC) is not typically used due to the presence of oxygen ions and electrons as charge carriers. To address this complexity within the model, two resistor networks are employed. These networks conduct the different electrical species, and are linked through a resistor representing the charge transfer (CT) process. In the case of mixed-conducting electrodes, this CT occurs at the surface exposed to the gas phase. The electrode simulated in this study is generated using the discrete element method of random sphere insertion, and subsequently voxelized to create the resistor network. This method considers the geometric and microstructural parameters of the electrode, such as porosity, particle size, and electrode thickness. Electrical parameters are incorporated into the network through the values of the various conductivities characterizing MIEC oxides and including CT interface conductivities. By integrating geometric, microstructural, and electrical parameters, the model accurately captures the behavior of the electrodes. The close agreement between simulation and experimental/theoretical results highlights the efficacy of the approach in elucidating the electrochemical processes occurring at the MIEC electrode.
Fil: Setevich, Cristian F.. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Fil: Larrondo, Susana Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina. Universidad Nacional de San Martín; Argentina
description In this study, we propose and analyze a new resistor network model designed for the analysis of electrodes with mixed conductivity in solid oxide fuel cells (SOFCs). Resistor networks simulation for electrodes with mixed ionic and electronic conductivity oxides (MIEC) is not typically used due to the presence of oxygen ions and electrons as charge carriers. To address this complexity within the model, two resistor networks are employed. These networks conduct the different electrical species, and are linked through a resistor representing the charge transfer (CT) process. In the case of mixed-conducting electrodes, this CT occurs at the surface exposed to the gas phase. The electrode simulated in this study is generated using the discrete element method of random sphere insertion, and subsequently voxelized to create the resistor network. This method considers the geometric and microstructural parameters of the electrode, such as porosity, particle size, and electrode thickness. Electrical parameters are incorporated into the network through the values of the various conductivities characterizing MIEC oxides and including CT interface conductivities. By integrating geometric, microstructural, and electrical parameters, the model accurately captures the behavior of the electrodes. The close agreement between simulation and experimental/theoretical results highlights the efficacy of the approach in elucidating the electrochemical processes occurring at the MIEC electrode.
publishDate 2024
dc.date.none.fl_str_mv 2024-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/257178
Setevich, Cristian F.; Larrondo, Susana Adelina; Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes; Elsevier; Materials Today Communications; 39; 5-2024; 1-21
2352-4928
CONICET Digital
CONICET
url http://hdl.handle.net/11336/257178
identifier_str_mv Setevich, Cristian F.; Larrondo, Susana Adelina; Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes; Elsevier; Materials Today Communications; 39; 5-2024; 1-21
2352-4928
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2352492824012406
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mtcomm.2024.109259
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781512692793344
score 12.982451