Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes
- Autores
- Setevich, Cristian F.; Larrondo, Susana Adelina
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this study, we propose and analyze a new resistor network model designed for the analysis of electrodes with mixed conductivity in solid oxide fuel cells (SOFCs). Resistor networks simulation for electrodes with mixed ionic and electronic conductivity oxides (MIEC) is not typically used due to the presence of oxygen ions and electrons as charge carriers. To address this complexity within the model, two resistor networks are employed. These networks conduct the different electrical species, and are linked through a resistor representing the charge transfer (CT) process. In the case of mixed-conducting electrodes, this CT occurs at the surface exposed to the gas phase. The electrode simulated in this study is generated using the discrete element method of random sphere insertion, and subsequently voxelized to create the resistor network. This method considers the geometric and microstructural parameters of the electrode, such as porosity, particle size, and electrode thickness. Electrical parameters are incorporated into the network through the values of the various conductivities characterizing MIEC oxides and including CT interface conductivities. By integrating geometric, microstructural, and electrical parameters, the model accurately captures the behavior of the electrodes. The close agreement between simulation and experimental/theoretical results highlights the efficacy of the approach in elucidating the electrochemical processes occurring at the MIEC electrode.
Fil: Setevich, Cristian F.. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Fil: Larrondo, Susana Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina. Universidad Nacional de San Martín; Argentina - Materia
-
sofc
resistor networks
miec
simulation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/257178
Ver los metadatos del registro completo
| id |
CONICETDig_6ed4e458b177b2e8852ae2cf7419c409 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/257178 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodesSetevich, Cristian F.Larrondo, Susana Adelinasofcresistor networksmiecsimulationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this study, we propose and analyze a new resistor network model designed for the analysis of electrodes with mixed conductivity in solid oxide fuel cells (SOFCs). Resistor networks simulation for electrodes with mixed ionic and electronic conductivity oxides (MIEC) is not typically used due to the presence of oxygen ions and electrons as charge carriers. To address this complexity within the model, two resistor networks are employed. These networks conduct the different electrical species, and are linked through a resistor representing the charge transfer (CT) process. In the case of mixed-conducting electrodes, this CT occurs at the surface exposed to the gas phase. The electrode simulated in this study is generated using the discrete element method of random sphere insertion, and subsequently voxelized to create the resistor network. This method considers the geometric and microstructural parameters of the electrode, such as porosity, particle size, and electrode thickness. Electrical parameters are incorporated into the network through the values of the various conductivities characterizing MIEC oxides and including CT interface conductivities. By integrating geometric, microstructural, and electrical parameters, the model accurately captures the behavior of the electrodes. The close agreement between simulation and experimental/theoretical results highlights the efficacy of the approach in elucidating the electrochemical processes occurring at the MIEC electrode.Fil: Setevich, Cristian F.. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; ArgentinaFil: Larrondo, Susana Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina. Universidad Nacional de San Martín; ArgentinaElsevier2024-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/257178Setevich, Cristian F.; Larrondo, Susana Adelina; Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes; Elsevier; Materials Today Communications; 39; 5-2024; 1-212352-4928CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2352492824012406info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mtcomm.2024.109259info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:12:13Zoai:ri.conicet.gov.ar:11336/257178instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:12:13.681CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes |
| title |
Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes |
| spellingShingle |
Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes Setevich, Cristian F. sofc resistor networks miec simulation |
| title_short |
Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes |
| title_full |
Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes |
| title_fullStr |
Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes |
| title_full_unstemmed |
Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes |
| title_sort |
Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes |
| dc.creator.none.fl_str_mv |
Setevich, Cristian F. Larrondo, Susana Adelina |
| author |
Setevich, Cristian F. |
| author_facet |
Setevich, Cristian F. Larrondo, Susana Adelina |
| author_role |
author |
| author2 |
Larrondo, Susana Adelina |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
sofc resistor networks miec simulation |
| topic |
sofc resistor networks miec simulation |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this study, we propose and analyze a new resistor network model designed for the analysis of electrodes with mixed conductivity in solid oxide fuel cells (SOFCs). Resistor networks simulation for electrodes with mixed ionic and electronic conductivity oxides (MIEC) is not typically used due to the presence of oxygen ions and electrons as charge carriers. To address this complexity within the model, two resistor networks are employed. These networks conduct the different electrical species, and are linked through a resistor representing the charge transfer (CT) process. In the case of mixed-conducting electrodes, this CT occurs at the surface exposed to the gas phase. The electrode simulated in this study is generated using the discrete element method of random sphere insertion, and subsequently voxelized to create the resistor network. This method considers the geometric and microstructural parameters of the electrode, such as porosity, particle size, and electrode thickness. Electrical parameters are incorporated into the network through the values of the various conductivities characterizing MIEC oxides and including CT interface conductivities. By integrating geometric, microstructural, and electrical parameters, the model accurately captures the behavior of the electrodes. The close agreement between simulation and experimental/theoretical results highlights the efficacy of the approach in elucidating the electrochemical processes occurring at the MIEC electrode. Fil: Setevich, Cristian F.. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina Fil: Larrondo, Susana Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina. Universidad Nacional de San Martín; Argentina |
| description |
In this study, we propose and analyze a new resistor network model designed for the analysis of electrodes with mixed conductivity in solid oxide fuel cells (SOFCs). Resistor networks simulation for electrodes with mixed ionic and electronic conductivity oxides (MIEC) is not typically used due to the presence of oxygen ions and electrons as charge carriers. To address this complexity within the model, two resistor networks are employed. These networks conduct the different electrical species, and are linked through a resistor representing the charge transfer (CT) process. In the case of mixed-conducting electrodes, this CT occurs at the surface exposed to the gas phase. The electrode simulated in this study is generated using the discrete element method of random sphere insertion, and subsequently voxelized to create the resistor network. This method considers the geometric and microstructural parameters of the electrode, such as porosity, particle size, and electrode thickness. Electrical parameters are incorporated into the network through the values of the various conductivities characterizing MIEC oxides and including CT interface conductivities. By integrating geometric, microstructural, and electrical parameters, the model accurately captures the behavior of the electrodes. The close agreement between simulation and experimental/theoretical results highlights the efficacy of the approach in elucidating the electrochemical processes occurring at the MIEC electrode. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/257178 Setevich, Cristian F.; Larrondo, Susana Adelina; Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes; Elsevier; Materials Today Communications; 39; 5-2024; 1-21 2352-4928 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/257178 |
| identifier_str_mv |
Setevich, Cristian F.; Larrondo, Susana Adelina; Novel 3-D resistor network simulation method for mixed ionic and electronic conducting electrodes; Elsevier; Materials Today Communications; 39; 5-2024; 1-21 2352-4928 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2352492824012406 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.mtcomm.2024.109259 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781512692793344 |
| score |
12.982451 |