Behaviour of resampling methods under different weighting schemes, measures and variable resampling strengths
- Autores
- Kopuchian, Cecilia; Ramirez, Martin Javier
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We compared general behaviour trends of resampling methods (bootstrap, bootstrap with Poisson distribution, jackknife, and jackknife with symmetric resampling) and different ways to summarize the results for resampling (absolute frequency, F, and frequency difference, GC¢) for real data sets under variable resampling strengths in three weighting schemes. We propose an equivalence between bootstrap and jackknife in order to make bootstrap variable across different resampling strengths. Specifically, for each method we evaluated the number of spurious groups (groups not present in the strict consensus of the unaltered data set), of real groups, and of inconsistencies in ranking of groups under variable resampling strengths. We found that GC¢ always generated more spurious groups and recovered more groups than F. Bootstrap methods generated more spurious groups than jackknife methods; and jackknife is the method that recovered more real groups. We consistently obtained a higher proportion of spurious groups for GC¢ than for F; and for bootstrap than for jackknife. Finally, we evaluated the ranking of groups under variable resampling strengths qualitatively in the trajectories of ‘‘support’’ against resampling strength, and quantitatively with Kendall coefficient values. We found fewer ranking inconsistencies for GC¢ than for F, and for bootstrap than for jackknife.
Fil: Kopuchian, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Centro de Ecología Aplicada del Litoral. Universidad Nacional del Nordeste. Centro de Ecología Aplicada del Litoral; Argentina
Fil: Ramirez, Martin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentina - Materia
-
JAKKNIFE
BOOTSTRAP
SUPPORT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/150462
Ver los metadatos del registro completo
id |
CONICETDig_6e66e2f414890afd4863479c7c0c20a8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/150462 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Behaviour of resampling methods under different weighting schemes, measures and variable resampling strengthsKopuchian, CeciliaRamirez, Martin JavierJAKKNIFEBOOTSTRAPSUPPORThttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1We compared general behaviour trends of resampling methods (bootstrap, bootstrap with Poisson distribution, jackknife, and jackknife with symmetric resampling) and different ways to summarize the results for resampling (absolute frequency, F, and frequency difference, GC¢) for real data sets under variable resampling strengths in three weighting schemes. We propose an equivalence between bootstrap and jackknife in order to make bootstrap variable across different resampling strengths. Specifically, for each method we evaluated the number of spurious groups (groups not present in the strict consensus of the unaltered data set), of real groups, and of inconsistencies in ranking of groups under variable resampling strengths. We found that GC¢ always generated more spurious groups and recovered more groups than F. Bootstrap methods generated more spurious groups than jackknife methods; and jackknife is the method that recovered more real groups. We consistently obtained a higher proportion of spurious groups for GC¢ than for F; and for bootstrap than for jackknife. Finally, we evaluated the ranking of groups under variable resampling strengths qualitatively in the trajectories of ‘‘support’’ against resampling strength, and quantitatively with Kendall coefficient values. We found fewer ranking inconsistencies for GC¢ than for F, and for bootstrap than for jackknife.Fil: Kopuchian, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Centro de Ecología Aplicada del Litoral. Universidad Nacional del Nordeste. Centro de Ecología Aplicada del Litoral; ArgentinaFil: Ramirez, Martin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaWiley Blackwell Publishing, Inc2010-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/150462Kopuchian, Cecilia; Ramirez, Martin Javier; Behaviour of resampling methods under different weighting schemes, measures and variable resampling strengths; Wiley Blackwell Publishing, Inc; Cladistics; 26; 1; 2-2010; 86-970748-3007CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/j.1096-0031.2009.00269.xinfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1096-0031.2009.00269.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:22:40Zoai:ri.conicet.gov.ar:11336/150462instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:22:41.102CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Behaviour of resampling methods under different weighting schemes, measures and variable resampling strengths |
title |
Behaviour of resampling methods under different weighting schemes, measures and variable resampling strengths |
spellingShingle |
Behaviour of resampling methods under different weighting schemes, measures and variable resampling strengths Kopuchian, Cecilia JAKKNIFE BOOTSTRAP SUPPORT |
title_short |
Behaviour of resampling methods under different weighting schemes, measures and variable resampling strengths |
title_full |
Behaviour of resampling methods under different weighting schemes, measures and variable resampling strengths |
title_fullStr |
Behaviour of resampling methods under different weighting schemes, measures and variable resampling strengths |
title_full_unstemmed |
Behaviour of resampling methods under different weighting schemes, measures and variable resampling strengths |
title_sort |
Behaviour of resampling methods under different weighting schemes, measures and variable resampling strengths |
dc.creator.none.fl_str_mv |
Kopuchian, Cecilia Ramirez, Martin Javier |
author |
Kopuchian, Cecilia |
author_facet |
Kopuchian, Cecilia Ramirez, Martin Javier |
author_role |
author |
author2 |
Ramirez, Martin Javier |
author2_role |
author |
dc.subject.none.fl_str_mv |
JAKKNIFE BOOTSTRAP SUPPORT |
topic |
JAKKNIFE BOOTSTRAP SUPPORT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We compared general behaviour trends of resampling methods (bootstrap, bootstrap with Poisson distribution, jackknife, and jackknife with symmetric resampling) and different ways to summarize the results for resampling (absolute frequency, F, and frequency difference, GC¢) for real data sets under variable resampling strengths in three weighting schemes. We propose an equivalence between bootstrap and jackknife in order to make bootstrap variable across different resampling strengths. Specifically, for each method we evaluated the number of spurious groups (groups not present in the strict consensus of the unaltered data set), of real groups, and of inconsistencies in ranking of groups under variable resampling strengths. We found that GC¢ always generated more spurious groups and recovered more groups than F. Bootstrap methods generated more spurious groups than jackknife methods; and jackknife is the method that recovered more real groups. We consistently obtained a higher proportion of spurious groups for GC¢ than for F; and for bootstrap than for jackknife. Finally, we evaluated the ranking of groups under variable resampling strengths qualitatively in the trajectories of ‘‘support’’ against resampling strength, and quantitatively with Kendall coefficient values. We found fewer ranking inconsistencies for GC¢ than for F, and for bootstrap than for jackknife. Fil: Kopuchian, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Centro de Ecología Aplicada del Litoral. Universidad Nacional del Nordeste. Centro de Ecología Aplicada del Litoral; Argentina Fil: Ramirez, Martin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentina |
description |
We compared general behaviour trends of resampling methods (bootstrap, bootstrap with Poisson distribution, jackknife, and jackknife with symmetric resampling) and different ways to summarize the results for resampling (absolute frequency, F, and frequency difference, GC¢) for real data sets under variable resampling strengths in three weighting schemes. We propose an equivalence between bootstrap and jackknife in order to make bootstrap variable across different resampling strengths. Specifically, for each method we evaluated the number of spurious groups (groups not present in the strict consensus of the unaltered data set), of real groups, and of inconsistencies in ranking of groups under variable resampling strengths. We found that GC¢ always generated more spurious groups and recovered more groups than F. Bootstrap methods generated more spurious groups than jackknife methods; and jackknife is the method that recovered more real groups. We consistently obtained a higher proportion of spurious groups for GC¢ than for F; and for bootstrap than for jackknife. Finally, we evaluated the ranking of groups under variable resampling strengths qualitatively in the trajectories of ‘‘support’’ against resampling strength, and quantitatively with Kendall coefficient values. We found fewer ranking inconsistencies for GC¢ than for F, and for bootstrap than for jackknife. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/150462 Kopuchian, Cecilia; Ramirez, Martin Javier; Behaviour of resampling methods under different weighting schemes, measures and variable resampling strengths; Wiley Blackwell Publishing, Inc; Cladistics; 26; 1; 2-2010; 86-97 0748-3007 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/150462 |
identifier_str_mv |
Kopuchian, Cecilia; Ramirez, Martin Javier; Behaviour of resampling methods under different weighting schemes, measures and variable resampling strengths; Wiley Blackwell Publishing, Inc; Cladistics; 26; 1; 2-2010; 86-97 0748-3007 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/j.1096-0031.2009.00269.x info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1096-0031.2009.00269.x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981248998309888 |
score |
12.493442 |