Morphometry of subaerial shield volcanoes and glaciovolcanoes from Reykjanes Peninsula, Iceland: Effects of eruption environment

Autores
Pedersen, G. B. M.; Grosse, Pablo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a morphometric study of 33 basaltic volcanic edifices from the Reykjanes Peninsula, Iceland, using a 20 m resolution digital elevation model (DEM). Slope values distinguish subaerial from intraglacial eruption environments, with glaciovolcanic edifices having average slope values that are > 5° higher than subaerial shields. The 26 analyzed glaciovolcanic edifices are separated into 3 groups based on size, and are also categorized following the new classification scheme of tuyas by Russell et al. (2014), into 15 tindars, 1 conical tuya, 3 flat-topped tuyas and 7 complex tuyas. The glaciovolcanic edifices show a continuum of landforms ranging from small elongated tindars to large equidimensional flat-topped tuyas. The smaller edifices (< 0.01 km3) are all tindars and the larger edifices (> 0.1 km3) are flat-topped tuyas. The mid-sized edifices (0.01–0.1 km3) show a wide variety of shapes and classify either as tindars or as complex tuyas, with only one edifice classifying as a conical tuya. Edifice elongation tends to decrease with volume, suggesting that small edifices are primarily fissure controlled, whereas larger edifices are mainly controlled by a central vent. The mid-sized complex tuyas are transitional edifices, suggesting that some intraglacial eruptions start as fissure eruptions that subsequently concentrate into one or more central vents, whereas the mid-sized tindars suggest a sustained fissure eruption. There is a tectonic control on the orientation of the edifices evidenced by a strong correlation between edifice elongation azimuth and mapped faults and fractures. Most edifice elongations cluster between 020° and 080°, coinciding with the strike of normal faults within and at the boundary of regional volcanic systems, but some edifices have elongations that correlate with N–S striking book-shelf faults. This implies that intraglacial eruptions are controlled by pre-existing pathways in the crust, as has been previously observed for subaerial fissure eruptions. In terms of classification, quantification of the limits between the four tuya types proposed by Russell et al. (2014) is difficult because of the transitional nature shown by several edifices. A threshold of 1.8 in ellipticity index (E.I.) values can be used to distinguish tindars from the other three types. Flat-topped tuyas are distinguished by their greater overall size, their large and relatively flat summit regions, reflected in bimodal slope distributions, and their low E.I. and low to intermediate irregularity index (I.I.) values. The only analyzed conical tuya has very low E.I. and I.I. values, very small summit regions and very steep flank slopes. The complex tuyas have variable morphometries, but are in general characterized by high I.I. values and very irregular slope distributions. No correlation is observed between edifice-scale morphology and lithology (e.g. pillow dominated or hyaloclastite dominated).
Fil: Pedersen, G. B. M.. University of Iceland. Institute of Earth Sciences. Nordic Volcanological Center; Islandia
Fil: Grosse, Pablo. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina
Materia
Morphometry
Intraglacial volcanoes
Tuya
Shield volcanoes
Reykjanes Peninsula
Iceland
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/7273

id CONICETDig_6df15536a593dda005e0079852caa189
oai_identifier_str oai:ri.conicet.gov.ar:11336/7273
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Morphometry of subaerial shield volcanoes and glaciovolcanoes from Reykjanes Peninsula, Iceland: Effects of eruption environmentPedersen, G. B. M.Grosse, PabloMorphometryIntraglacial volcanoesTuyaShield volcanoesReykjanes PeninsulaIcelandhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We present a morphometric study of 33 basaltic volcanic edifices from the Reykjanes Peninsula, Iceland, using a 20 m resolution digital elevation model (DEM). Slope values distinguish subaerial from intraglacial eruption environments, with glaciovolcanic edifices having average slope values that are > 5° higher than subaerial shields. The 26 analyzed glaciovolcanic edifices are separated into 3 groups based on size, and are also categorized following the new classification scheme of tuyas by Russell et al. (2014), into 15 tindars, 1 conical tuya, 3 flat-topped tuyas and 7 complex tuyas. The glaciovolcanic edifices show a continuum of landforms ranging from small elongated tindars to large equidimensional flat-topped tuyas. The smaller edifices (< 0.01 km3) are all tindars and the larger edifices (> 0.1 km3) are flat-topped tuyas. The mid-sized edifices (0.01–0.1 km3) show a wide variety of shapes and classify either as tindars or as complex tuyas, with only one edifice classifying as a conical tuya. Edifice elongation tends to decrease with volume, suggesting that small edifices are primarily fissure controlled, whereas larger edifices are mainly controlled by a central vent. The mid-sized complex tuyas are transitional edifices, suggesting that some intraglacial eruptions start as fissure eruptions that subsequently concentrate into one or more central vents, whereas the mid-sized tindars suggest a sustained fissure eruption. There is a tectonic control on the orientation of the edifices evidenced by a strong correlation between edifice elongation azimuth and mapped faults and fractures. Most edifice elongations cluster between 020° and 080°, coinciding with the strike of normal faults within and at the boundary of regional volcanic systems, but some edifices have elongations that correlate with N–S striking book-shelf faults. This implies that intraglacial eruptions are controlled by pre-existing pathways in the crust, as has been previously observed for subaerial fissure eruptions. In terms of classification, quantification of the limits between the four tuya types proposed by Russell et al. (2014) is difficult because of the transitional nature shown by several edifices. A threshold of 1.8 in ellipticity index (E.I.) values can be used to distinguish tindars from the other three types. Flat-topped tuyas are distinguished by their greater overall size, their large and relatively flat summit regions, reflected in bimodal slope distributions, and their low E.I. and low to intermediate irregularity index (I.I.) values. The only analyzed conical tuya has very low E.I. and I.I. values, very small summit regions and very steep flank slopes. The complex tuyas have variable morphometries, but are in general characterized by high I.I. values and very irregular slope distributions. No correlation is observed between edifice-scale morphology and lithology (e.g. pillow dominated or hyaloclastite dominated).Fil: Pedersen, G. B. M.. University of Iceland. Institute of Earth Sciences. Nordic Volcanological Center; IslandiaFil: Grosse, Pablo. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; ArgentinaElsevier Science2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/7273Pedersen, G. B. M.; Grosse, Pablo; Morphometry of subaerial shield volcanoes and glaciovolcanoes from Reykjanes Peninsula, Iceland: Effects of eruption environment; Elsevier Science; Journal Of Volcanology And Geothermal Research; 282; 8-2014; 115-1330377-0273enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0377027314001838info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jvolgeores.2014.06.008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:44Zoai:ri.conicet.gov.ar:11336/7273instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:44.624CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Morphometry of subaerial shield volcanoes and glaciovolcanoes from Reykjanes Peninsula, Iceland: Effects of eruption environment
title Morphometry of subaerial shield volcanoes and glaciovolcanoes from Reykjanes Peninsula, Iceland: Effects of eruption environment
spellingShingle Morphometry of subaerial shield volcanoes and glaciovolcanoes from Reykjanes Peninsula, Iceland: Effects of eruption environment
Pedersen, G. B. M.
Morphometry
Intraglacial volcanoes
Tuya
Shield volcanoes
Reykjanes Peninsula
Iceland
title_short Morphometry of subaerial shield volcanoes and glaciovolcanoes from Reykjanes Peninsula, Iceland: Effects of eruption environment
title_full Morphometry of subaerial shield volcanoes and glaciovolcanoes from Reykjanes Peninsula, Iceland: Effects of eruption environment
title_fullStr Morphometry of subaerial shield volcanoes and glaciovolcanoes from Reykjanes Peninsula, Iceland: Effects of eruption environment
title_full_unstemmed Morphometry of subaerial shield volcanoes and glaciovolcanoes from Reykjanes Peninsula, Iceland: Effects of eruption environment
title_sort Morphometry of subaerial shield volcanoes and glaciovolcanoes from Reykjanes Peninsula, Iceland: Effects of eruption environment
dc.creator.none.fl_str_mv Pedersen, G. B. M.
Grosse, Pablo
author Pedersen, G. B. M.
author_facet Pedersen, G. B. M.
Grosse, Pablo
author_role author
author2 Grosse, Pablo
author2_role author
dc.subject.none.fl_str_mv Morphometry
Intraglacial volcanoes
Tuya
Shield volcanoes
Reykjanes Peninsula
Iceland
topic Morphometry
Intraglacial volcanoes
Tuya
Shield volcanoes
Reykjanes Peninsula
Iceland
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a morphometric study of 33 basaltic volcanic edifices from the Reykjanes Peninsula, Iceland, using a 20 m resolution digital elevation model (DEM). Slope values distinguish subaerial from intraglacial eruption environments, with glaciovolcanic edifices having average slope values that are > 5° higher than subaerial shields. The 26 analyzed glaciovolcanic edifices are separated into 3 groups based on size, and are also categorized following the new classification scheme of tuyas by Russell et al. (2014), into 15 tindars, 1 conical tuya, 3 flat-topped tuyas and 7 complex tuyas. The glaciovolcanic edifices show a continuum of landforms ranging from small elongated tindars to large equidimensional flat-topped tuyas. The smaller edifices (< 0.01 km3) are all tindars and the larger edifices (> 0.1 km3) are flat-topped tuyas. The mid-sized edifices (0.01–0.1 km3) show a wide variety of shapes and classify either as tindars or as complex tuyas, with only one edifice classifying as a conical tuya. Edifice elongation tends to decrease with volume, suggesting that small edifices are primarily fissure controlled, whereas larger edifices are mainly controlled by a central vent. The mid-sized complex tuyas are transitional edifices, suggesting that some intraglacial eruptions start as fissure eruptions that subsequently concentrate into one or more central vents, whereas the mid-sized tindars suggest a sustained fissure eruption. There is a tectonic control on the orientation of the edifices evidenced by a strong correlation between edifice elongation azimuth and mapped faults and fractures. Most edifice elongations cluster between 020° and 080°, coinciding with the strike of normal faults within and at the boundary of regional volcanic systems, but some edifices have elongations that correlate with N–S striking book-shelf faults. This implies that intraglacial eruptions are controlled by pre-existing pathways in the crust, as has been previously observed for subaerial fissure eruptions. In terms of classification, quantification of the limits between the four tuya types proposed by Russell et al. (2014) is difficult because of the transitional nature shown by several edifices. A threshold of 1.8 in ellipticity index (E.I.) values can be used to distinguish tindars from the other three types. Flat-topped tuyas are distinguished by their greater overall size, their large and relatively flat summit regions, reflected in bimodal slope distributions, and their low E.I. and low to intermediate irregularity index (I.I.) values. The only analyzed conical tuya has very low E.I. and I.I. values, very small summit regions and very steep flank slopes. The complex tuyas have variable morphometries, but are in general characterized by high I.I. values and very irregular slope distributions. No correlation is observed between edifice-scale morphology and lithology (e.g. pillow dominated or hyaloclastite dominated).
Fil: Pedersen, G. B. M.. University of Iceland. Institute of Earth Sciences. Nordic Volcanological Center; Islandia
Fil: Grosse, Pablo. Fundación Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán; Argentina
description We present a morphometric study of 33 basaltic volcanic edifices from the Reykjanes Peninsula, Iceland, using a 20 m resolution digital elevation model (DEM). Slope values distinguish subaerial from intraglacial eruption environments, with glaciovolcanic edifices having average slope values that are > 5° higher than subaerial shields. The 26 analyzed glaciovolcanic edifices are separated into 3 groups based on size, and are also categorized following the new classification scheme of tuyas by Russell et al. (2014), into 15 tindars, 1 conical tuya, 3 flat-topped tuyas and 7 complex tuyas. The glaciovolcanic edifices show a continuum of landforms ranging from small elongated tindars to large equidimensional flat-topped tuyas. The smaller edifices (< 0.01 km3) are all tindars and the larger edifices (> 0.1 km3) are flat-topped tuyas. The mid-sized edifices (0.01–0.1 km3) show a wide variety of shapes and classify either as tindars or as complex tuyas, with only one edifice classifying as a conical tuya. Edifice elongation tends to decrease with volume, suggesting that small edifices are primarily fissure controlled, whereas larger edifices are mainly controlled by a central vent. The mid-sized complex tuyas are transitional edifices, suggesting that some intraglacial eruptions start as fissure eruptions that subsequently concentrate into one or more central vents, whereas the mid-sized tindars suggest a sustained fissure eruption. There is a tectonic control on the orientation of the edifices evidenced by a strong correlation between edifice elongation azimuth and mapped faults and fractures. Most edifice elongations cluster between 020° and 080°, coinciding with the strike of normal faults within and at the boundary of regional volcanic systems, but some edifices have elongations that correlate with N–S striking book-shelf faults. This implies that intraglacial eruptions are controlled by pre-existing pathways in the crust, as has been previously observed for subaerial fissure eruptions. In terms of classification, quantification of the limits between the four tuya types proposed by Russell et al. (2014) is difficult because of the transitional nature shown by several edifices. A threshold of 1.8 in ellipticity index (E.I.) values can be used to distinguish tindars from the other three types. Flat-topped tuyas are distinguished by their greater overall size, their large and relatively flat summit regions, reflected in bimodal slope distributions, and their low E.I. and low to intermediate irregularity index (I.I.) values. The only analyzed conical tuya has very low E.I. and I.I. values, very small summit regions and very steep flank slopes. The complex tuyas have variable morphometries, but are in general characterized by high I.I. values and very irregular slope distributions. No correlation is observed between edifice-scale morphology and lithology (e.g. pillow dominated or hyaloclastite dominated).
publishDate 2014
dc.date.none.fl_str_mv 2014-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/7273
Pedersen, G. B. M.; Grosse, Pablo; Morphometry of subaerial shield volcanoes and glaciovolcanoes from Reykjanes Peninsula, Iceland: Effects of eruption environment; Elsevier Science; Journal Of Volcanology And Geothermal Research; 282; 8-2014; 115-133
0377-0273
url http://hdl.handle.net/11336/7273
identifier_str_mv Pedersen, G. B. M.; Grosse, Pablo; Morphometry of subaerial shield volcanoes and glaciovolcanoes from Reykjanes Peninsula, Iceland: Effects of eruption environment; Elsevier Science; Journal Of Volcanology And Geothermal Research; 282; 8-2014; 115-133
0377-0273
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0377027314001838
info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jvolgeores.2014.06.008
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268937129033728
score 13.13397