Layered material characterization using ultrasonic transmission. An inverse estimation methodology

Autores
Messineo, Maria Gabriela; Rus, Guillermo; Elicabe, Guillermo Enrique; Frontini, Gloria Lia
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper presents an inverse methodology with the aim to characterize a layered material through the identification of acoustical and mechanical properties of its layers. The framework to accomplish this objective is provided by the Inverse Problems (IPs) theory. Material characterization refers to the detection and localization of discontinuities, as well as to the identification of physical properties, in order to predict the material behaviour. In this particular case, the IP is solved in the form of a parameter estimation problem, in which the goal is the estimation of the characteristic acoustic impedance, transit time, and attenuation of each layer. These parameters are directly related to relevant material properties, such as the speed of sound, density, elastic modulus and elastic energy dissipation constants. The IP solution is obtained by minimizing a cost functional formulated as the least squares error between the waveform calculated using an equivalent model, and the measured waveform obtained from ultrasonic transmission tests. The applied methodology allowed the accurate estimation of the desired parameters in materials composed of up to three layers. As a second contribution, a power law frequency dependence of the wave attenuation was identified for several homogeneous materials, based on the same ultrasonic transmission experiments.
Fil: Messineo, Maria Gabriela. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Rus, Guillermo. Universidad de Granada; España
Fil: Elicabe, Guillermo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Frontini, Gloria Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
Inverse Problem
Layered Materials
Mechanical Properties
Parameter Estimation
Ultrasound
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/40026

id CONICETDig_6dc7af7bb4cc5858369baefa8a483715
oai_identifier_str oai:ri.conicet.gov.ar:11336/40026
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Layered material characterization using ultrasonic transmission. An inverse estimation methodologyMessineo, Maria GabrielaRus, GuillermoElicabe, Guillermo EnriqueFrontini, Gloria LiaInverse ProblemLayered MaterialsMechanical PropertiesParameter EstimationUltrasoundhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2This paper presents an inverse methodology with the aim to characterize a layered material through the identification of acoustical and mechanical properties of its layers. The framework to accomplish this objective is provided by the Inverse Problems (IPs) theory. Material characterization refers to the detection and localization of discontinuities, as well as to the identification of physical properties, in order to predict the material behaviour. In this particular case, the IP is solved in the form of a parameter estimation problem, in which the goal is the estimation of the characteristic acoustic impedance, transit time, and attenuation of each layer. These parameters are directly related to relevant material properties, such as the speed of sound, density, elastic modulus and elastic energy dissipation constants. The IP solution is obtained by minimizing a cost functional formulated as the least squares error between the waveform calculated using an equivalent model, and the measured waveform obtained from ultrasonic transmission tests. The applied methodology allowed the accurate estimation of the desired parameters in materials composed of up to three layers. As a second contribution, a power law frequency dependence of the wave attenuation was identified for several homogeneous materials, based on the same ultrasonic transmission experiments.Fil: Messineo, Maria Gabriela. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Rus, Guillermo. Universidad de Granada; EspañaFil: Elicabe, Guillermo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Frontini, Gloria Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaElsevier Science2016-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/40026Messineo, Maria Gabriela; Rus, Guillermo; Elicabe, Guillermo Enrique; Frontini, Gloria Lia; Layered material characterization using ultrasonic transmission. An inverse estimation methodology; Elsevier Science; Ultrasonics; 65; 2-2016; 315-3280041-624XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ultras.2015.09.010info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0041624X15002334info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:23Zoai:ri.conicet.gov.ar:11336/40026instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:23.704CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Layered material characterization using ultrasonic transmission. An inverse estimation methodology
title Layered material characterization using ultrasonic transmission. An inverse estimation methodology
spellingShingle Layered material characterization using ultrasonic transmission. An inverse estimation methodology
Messineo, Maria Gabriela
Inverse Problem
Layered Materials
Mechanical Properties
Parameter Estimation
Ultrasound
title_short Layered material characterization using ultrasonic transmission. An inverse estimation methodology
title_full Layered material characterization using ultrasonic transmission. An inverse estimation methodology
title_fullStr Layered material characterization using ultrasonic transmission. An inverse estimation methodology
title_full_unstemmed Layered material characterization using ultrasonic transmission. An inverse estimation methodology
title_sort Layered material characterization using ultrasonic transmission. An inverse estimation methodology
dc.creator.none.fl_str_mv Messineo, Maria Gabriela
Rus, Guillermo
Elicabe, Guillermo Enrique
Frontini, Gloria Lia
author Messineo, Maria Gabriela
author_facet Messineo, Maria Gabriela
Rus, Guillermo
Elicabe, Guillermo Enrique
Frontini, Gloria Lia
author_role author
author2 Rus, Guillermo
Elicabe, Guillermo Enrique
Frontini, Gloria Lia
author2_role author
author
author
dc.subject.none.fl_str_mv Inverse Problem
Layered Materials
Mechanical Properties
Parameter Estimation
Ultrasound
topic Inverse Problem
Layered Materials
Mechanical Properties
Parameter Estimation
Ultrasound
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This paper presents an inverse methodology with the aim to characterize a layered material through the identification of acoustical and mechanical properties of its layers. The framework to accomplish this objective is provided by the Inverse Problems (IPs) theory. Material characterization refers to the detection and localization of discontinuities, as well as to the identification of physical properties, in order to predict the material behaviour. In this particular case, the IP is solved in the form of a parameter estimation problem, in which the goal is the estimation of the characteristic acoustic impedance, transit time, and attenuation of each layer. These parameters are directly related to relevant material properties, such as the speed of sound, density, elastic modulus and elastic energy dissipation constants. The IP solution is obtained by minimizing a cost functional formulated as the least squares error between the waveform calculated using an equivalent model, and the measured waveform obtained from ultrasonic transmission tests. The applied methodology allowed the accurate estimation of the desired parameters in materials composed of up to three layers. As a second contribution, a power law frequency dependence of the wave attenuation was identified for several homogeneous materials, based on the same ultrasonic transmission experiments.
Fil: Messineo, Maria Gabriela. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Rus, Guillermo. Universidad de Granada; España
Fil: Elicabe, Guillermo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Frontini, Gloria Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description This paper presents an inverse methodology with the aim to characterize a layered material through the identification of acoustical and mechanical properties of its layers. The framework to accomplish this objective is provided by the Inverse Problems (IPs) theory. Material characterization refers to the detection and localization of discontinuities, as well as to the identification of physical properties, in order to predict the material behaviour. In this particular case, the IP is solved in the form of a parameter estimation problem, in which the goal is the estimation of the characteristic acoustic impedance, transit time, and attenuation of each layer. These parameters are directly related to relevant material properties, such as the speed of sound, density, elastic modulus and elastic energy dissipation constants. The IP solution is obtained by minimizing a cost functional formulated as the least squares error between the waveform calculated using an equivalent model, and the measured waveform obtained from ultrasonic transmission tests. The applied methodology allowed the accurate estimation of the desired parameters in materials composed of up to three layers. As a second contribution, a power law frequency dependence of the wave attenuation was identified for several homogeneous materials, based on the same ultrasonic transmission experiments.
publishDate 2016
dc.date.none.fl_str_mv 2016-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/40026
Messineo, Maria Gabriela; Rus, Guillermo; Elicabe, Guillermo Enrique; Frontini, Gloria Lia; Layered material characterization using ultrasonic transmission. An inverse estimation methodology; Elsevier Science; Ultrasonics; 65; 2-2016; 315-328
0041-624X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/40026
identifier_str_mv Messineo, Maria Gabriela; Rus, Guillermo; Elicabe, Guillermo Enrique; Frontini, Gloria Lia; Layered material characterization using ultrasonic transmission. An inverse estimation methodology; Elsevier Science; Ultrasonics; 65; 2-2016; 315-328
0041-624X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ultras.2015.09.010
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0041624X15002334
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613580415041536
score 13.070432