Layered material characterization using ultrasonic transmission. An inverse estimation methodology
- Autores
- Messineo, Maria Gabriela; Rus, Guillermo; Elicabe, Guillermo Enrique; Frontini, Gloria Lia
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper presents an inverse methodology with the aim to characterize a layered material through the identification of acoustical and mechanical properties of its layers. The framework to accomplish this objective is provided by the Inverse Problems (IPs) theory. Material characterization refers to the detection and localization of discontinuities, as well as to the identification of physical properties, in order to predict the material behaviour. In this particular case, the IP is solved in the form of a parameter estimation problem, in which the goal is the estimation of the characteristic acoustic impedance, transit time, and attenuation of each layer. These parameters are directly related to relevant material properties, such as the speed of sound, density, elastic modulus and elastic energy dissipation constants. The IP solution is obtained by minimizing a cost functional formulated as the least squares error between the waveform calculated using an equivalent model, and the measured waveform obtained from ultrasonic transmission tests. The applied methodology allowed the accurate estimation of the desired parameters in materials composed of up to three layers. As a second contribution, a power law frequency dependence of the wave attenuation was identified for several homogeneous materials, based on the same ultrasonic transmission experiments.
Fil: Messineo, Maria Gabriela. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Rus, Guillermo. Universidad de Granada; España
Fil: Elicabe, Guillermo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Frontini, Gloria Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
Inverse Problem
Layered Materials
Mechanical Properties
Parameter Estimation
Ultrasound - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/40026
Ver los metadatos del registro completo
id |
CONICETDig_6dc7af7bb4cc5858369baefa8a483715 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/40026 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Layered material characterization using ultrasonic transmission. An inverse estimation methodologyMessineo, Maria GabrielaRus, GuillermoElicabe, Guillermo EnriqueFrontini, Gloria LiaInverse ProblemLayered MaterialsMechanical PropertiesParameter EstimationUltrasoundhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2This paper presents an inverse methodology with the aim to characterize a layered material through the identification of acoustical and mechanical properties of its layers. The framework to accomplish this objective is provided by the Inverse Problems (IPs) theory. Material characterization refers to the detection and localization of discontinuities, as well as to the identification of physical properties, in order to predict the material behaviour. In this particular case, the IP is solved in the form of a parameter estimation problem, in which the goal is the estimation of the characteristic acoustic impedance, transit time, and attenuation of each layer. These parameters are directly related to relevant material properties, such as the speed of sound, density, elastic modulus and elastic energy dissipation constants. The IP solution is obtained by minimizing a cost functional formulated as the least squares error between the waveform calculated using an equivalent model, and the measured waveform obtained from ultrasonic transmission tests. The applied methodology allowed the accurate estimation of the desired parameters in materials composed of up to three layers. As a second contribution, a power law frequency dependence of the wave attenuation was identified for several homogeneous materials, based on the same ultrasonic transmission experiments.Fil: Messineo, Maria Gabriela. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Rus, Guillermo. Universidad de Granada; EspañaFil: Elicabe, Guillermo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Frontini, Gloria Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaElsevier Science2016-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/40026Messineo, Maria Gabriela; Rus, Guillermo; Elicabe, Guillermo Enrique; Frontini, Gloria Lia; Layered material characterization using ultrasonic transmission. An inverse estimation methodology; Elsevier Science; Ultrasonics; 65; 2-2016; 315-3280041-624XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ultras.2015.09.010info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0041624X15002334info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:23Zoai:ri.conicet.gov.ar:11336/40026instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:23.704CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Layered material characterization using ultrasonic transmission. An inverse estimation methodology |
title |
Layered material characterization using ultrasonic transmission. An inverse estimation methodology |
spellingShingle |
Layered material characterization using ultrasonic transmission. An inverse estimation methodology Messineo, Maria Gabriela Inverse Problem Layered Materials Mechanical Properties Parameter Estimation Ultrasound |
title_short |
Layered material characterization using ultrasonic transmission. An inverse estimation methodology |
title_full |
Layered material characterization using ultrasonic transmission. An inverse estimation methodology |
title_fullStr |
Layered material characterization using ultrasonic transmission. An inverse estimation methodology |
title_full_unstemmed |
Layered material characterization using ultrasonic transmission. An inverse estimation methodology |
title_sort |
Layered material characterization using ultrasonic transmission. An inverse estimation methodology |
dc.creator.none.fl_str_mv |
Messineo, Maria Gabriela Rus, Guillermo Elicabe, Guillermo Enrique Frontini, Gloria Lia |
author |
Messineo, Maria Gabriela |
author_facet |
Messineo, Maria Gabriela Rus, Guillermo Elicabe, Guillermo Enrique Frontini, Gloria Lia |
author_role |
author |
author2 |
Rus, Guillermo Elicabe, Guillermo Enrique Frontini, Gloria Lia |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Inverse Problem Layered Materials Mechanical Properties Parameter Estimation Ultrasound |
topic |
Inverse Problem Layered Materials Mechanical Properties Parameter Estimation Ultrasound |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper presents an inverse methodology with the aim to characterize a layered material through the identification of acoustical and mechanical properties of its layers. The framework to accomplish this objective is provided by the Inverse Problems (IPs) theory. Material characterization refers to the detection and localization of discontinuities, as well as to the identification of physical properties, in order to predict the material behaviour. In this particular case, the IP is solved in the form of a parameter estimation problem, in which the goal is the estimation of the characteristic acoustic impedance, transit time, and attenuation of each layer. These parameters are directly related to relevant material properties, such as the speed of sound, density, elastic modulus and elastic energy dissipation constants. The IP solution is obtained by minimizing a cost functional formulated as the least squares error between the waveform calculated using an equivalent model, and the measured waveform obtained from ultrasonic transmission tests. The applied methodology allowed the accurate estimation of the desired parameters in materials composed of up to three layers. As a second contribution, a power law frequency dependence of the wave attenuation was identified for several homogeneous materials, based on the same ultrasonic transmission experiments. Fil: Messineo, Maria Gabriela. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Rus, Guillermo. Universidad de Granada; España Fil: Elicabe, Guillermo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Frontini, Gloria Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
This paper presents an inverse methodology with the aim to characterize a layered material through the identification of acoustical and mechanical properties of its layers. The framework to accomplish this objective is provided by the Inverse Problems (IPs) theory. Material characterization refers to the detection and localization of discontinuities, as well as to the identification of physical properties, in order to predict the material behaviour. In this particular case, the IP is solved in the form of a parameter estimation problem, in which the goal is the estimation of the characteristic acoustic impedance, transit time, and attenuation of each layer. These parameters are directly related to relevant material properties, such as the speed of sound, density, elastic modulus and elastic energy dissipation constants. The IP solution is obtained by minimizing a cost functional formulated as the least squares error between the waveform calculated using an equivalent model, and the measured waveform obtained from ultrasonic transmission tests. The applied methodology allowed the accurate estimation of the desired parameters in materials composed of up to three layers. As a second contribution, a power law frequency dependence of the wave attenuation was identified for several homogeneous materials, based on the same ultrasonic transmission experiments. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/40026 Messineo, Maria Gabriela; Rus, Guillermo; Elicabe, Guillermo Enrique; Frontini, Gloria Lia; Layered material characterization using ultrasonic transmission. An inverse estimation methodology; Elsevier Science; Ultrasonics; 65; 2-2016; 315-328 0041-624X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/40026 |
identifier_str_mv |
Messineo, Maria Gabriela; Rus, Guillermo; Elicabe, Guillermo Enrique; Frontini, Gloria Lia; Layered material characterization using ultrasonic transmission. An inverse estimation methodology; Elsevier Science; Ultrasonics; 65; 2-2016; 315-328 0041-624X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ultras.2015.09.010 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0041624X15002334 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613580415041536 |
score |
13.070432 |