Stable superhydrophobic aluminum surfaces based on laser-fabricated hierarchical textures

Autores
Milles, Stephan; Dahms, Johannes; Soldera, Marcos Maximiliano; Lasagni, Andrés F.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Laser-microtextured surfaces have gained an increasing interest due to their enormous spectrum of applications and industrial scalability. Direct laser interference patterning (DLIP) and the well-established direct laser writing (DLW) methods are suitable as a powerful combination for the fabrication of single (DLW or DLIP) and multi-scale (DLW+DLIP) textures. In this work, four-beam DLIP and DLW were used independently and combined to produce functional textures on aluminum. The influence of the laser processing parameters, such as the applied laser fluence and the number of pulses, on the resulting topography was analyzed by confocal microscopy and scanning electron microscopy. The static long-term and dynamic wettability characteristics of the laser-textured surfaces were determined through water contact angle and hysteresis measurements, revealing superhydrophobic properties with static contact angles up to 163° and hysteresis as low as 9°. The classical Cassie-Baxter and Wenzel models were applied, permitting a deeper understanding of the observed wetting behaviors. Finally, mechanical stability tests revealed that the DLW elements in the multi-scale structure protects the smaller DLIP features under tribological conditions.
Fil: Milles, Stephan. Technische Universität Dresden; Alemania
Fil: Dahms, Johannes. Technische Universität Dresden; Alemania
Fil: Soldera, Marcos Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Lasagni, Andrés F.. Technische Universität Dresden; Alemania
Materia
ALUMINUM 1050
DIRECT LASER INTERFERENCE PATTERNING
DIRECT LASER WRITING
SINGLE-AND MULTI-SCALE TEXTURES
SUPERHYDROPHOBICITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/183473

id CONICETDig_6d91733e972fafba018b5dc5d128ff5f
oai_identifier_str oai:ri.conicet.gov.ar:11336/183473
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Stable superhydrophobic aluminum surfaces based on laser-fabricated hierarchical texturesMilles, StephanDahms, JohannesSoldera, Marcos MaximilianoLasagni, Andrés F.ALUMINUM 1050DIRECT LASER INTERFERENCE PATTERNINGDIRECT LASER WRITINGSINGLE-AND MULTI-SCALE TEXTURESSUPERHYDROPHOBICITYhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Laser-microtextured surfaces have gained an increasing interest due to their enormous spectrum of applications and industrial scalability. Direct laser interference patterning (DLIP) and the well-established direct laser writing (DLW) methods are suitable as a powerful combination for the fabrication of single (DLW or DLIP) and multi-scale (DLW+DLIP) textures. In this work, four-beam DLIP and DLW were used independently and combined to produce functional textures on aluminum. The influence of the laser processing parameters, such as the applied laser fluence and the number of pulses, on the resulting topography was analyzed by confocal microscopy and scanning electron microscopy. The static long-term and dynamic wettability characteristics of the laser-textured surfaces were determined through water contact angle and hysteresis measurements, revealing superhydrophobic properties with static contact angles up to 163° and hysteresis as low as 9°. The classical Cassie-Baxter and Wenzel models were applied, permitting a deeper understanding of the observed wetting behaviors. Finally, mechanical stability tests revealed that the DLW elements in the multi-scale structure protects the smaller DLIP features under tribological conditions.Fil: Milles, Stephan. Technische Universität Dresden; AlemaniaFil: Dahms, Johannes. Technische Universität Dresden; AlemaniaFil: Soldera, Marcos Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Lasagni, Andrés F.. Technische Universität Dresden; AlemaniaMDPI AG2021-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/183473Milles, Stephan; Dahms, Johannes; Soldera, Marcos Maximiliano; Lasagni, Andrés F.; Stable superhydrophobic aluminum surfaces based on laser-fabricated hierarchical textures; MDPI AG; Materials; 14; 1; 1-2021; 1-171996-1944CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/ma14010184info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:28:33Zoai:ri.conicet.gov.ar:11336/183473instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:28:33.343CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Stable superhydrophobic aluminum surfaces based on laser-fabricated hierarchical textures
title Stable superhydrophobic aluminum surfaces based on laser-fabricated hierarchical textures
spellingShingle Stable superhydrophobic aluminum surfaces based on laser-fabricated hierarchical textures
Milles, Stephan
ALUMINUM 1050
DIRECT LASER INTERFERENCE PATTERNING
DIRECT LASER WRITING
SINGLE-AND MULTI-SCALE TEXTURES
SUPERHYDROPHOBICITY
title_short Stable superhydrophobic aluminum surfaces based on laser-fabricated hierarchical textures
title_full Stable superhydrophobic aluminum surfaces based on laser-fabricated hierarchical textures
title_fullStr Stable superhydrophobic aluminum surfaces based on laser-fabricated hierarchical textures
title_full_unstemmed Stable superhydrophobic aluminum surfaces based on laser-fabricated hierarchical textures
title_sort Stable superhydrophobic aluminum surfaces based on laser-fabricated hierarchical textures
dc.creator.none.fl_str_mv Milles, Stephan
Dahms, Johannes
Soldera, Marcos Maximiliano
Lasagni, Andrés F.
author Milles, Stephan
author_facet Milles, Stephan
Dahms, Johannes
Soldera, Marcos Maximiliano
Lasagni, Andrés F.
author_role author
author2 Dahms, Johannes
Soldera, Marcos Maximiliano
Lasagni, Andrés F.
author2_role author
author
author
dc.subject.none.fl_str_mv ALUMINUM 1050
DIRECT LASER INTERFERENCE PATTERNING
DIRECT LASER WRITING
SINGLE-AND MULTI-SCALE TEXTURES
SUPERHYDROPHOBICITY
topic ALUMINUM 1050
DIRECT LASER INTERFERENCE PATTERNING
DIRECT LASER WRITING
SINGLE-AND MULTI-SCALE TEXTURES
SUPERHYDROPHOBICITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Laser-microtextured surfaces have gained an increasing interest due to their enormous spectrum of applications and industrial scalability. Direct laser interference patterning (DLIP) and the well-established direct laser writing (DLW) methods are suitable as a powerful combination for the fabrication of single (DLW or DLIP) and multi-scale (DLW+DLIP) textures. In this work, four-beam DLIP and DLW were used independently and combined to produce functional textures on aluminum. The influence of the laser processing parameters, such as the applied laser fluence and the number of pulses, on the resulting topography was analyzed by confocal microscopy and scanning electron microscopy. The static long-term and dynamic wettability characteristics of the laser-textured surfaces were determined through water contact angle and hysteresis measurements, revealing superhydrophobic properties with static contact angles up to 163° and hysteresis as low as 9°. The classical Cassie-Baxter and Wenzel models were applied, permitting a deeper understanding of the observed wetting behaviors. Finally, mechanical stability tests revealed that the DLW elements in the multi-scale structure protects the smaller DLIP features under tribological conditions.
Fil: Milles, Stephan. Technische Universität Dresden; Alemania
Fil: Dahms, Johannes. Technische Universität Dresden; Alemania
Fil: Soldera, Marcos Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Lasagni, Andrés F.. Technische Universität Dresden; Alemania
description Laser-microtextured surfaces have gained an increasing interest due to their enormous spectrum of applications and industrial scalability. Direct laser interference patterning (DLIP) and the well-established direct laser writing (DLW) methods are suitable as a powerful combination for the fabrication of single (DLW or DLIP) and multi-scale (DLW+DLIP) textures. In this work, four-beam DLIP and DLW were used independently and combined to produce functional textures on aluminum. The influence of the laser processing parameters, such as the applied laser fluence and the number of pulses, on the resulting topography was analyzed by confocal microscopy and scanning electron microscopy. The static long-term and dynamic wettability characteristics of the laser-textured surfaces were determined through water contact angle and hysteresis measurements, revealing superhydrophobic properties with static contact angles up to 163° and hysteresis as low as 9°. The classical Cassie-Baxter and Wenzel models were applied, permitting a deeper understanding of the observed wetting behaviors. Finally, mechanical stability tests revealed that the DLW elements in the multi-scale structure protects the smaller DLIP features under tribological conditions.
publishDate 2021
dc.date.none.fl_str_mv 2021-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/183473
Milles, Stephan; Dahms, Johannes; Soldera, Marcos Maximiliano; Lasagni, Andrés F.; Stable superhydrophobic aluminum surfaces based on laser-fabricated hierarchical textures; MDPI AG; Materials; 14; 1; 1-2021; 1-17
1996-1944
CONICET Digital
CONICET
url http://hdl.handle.net/11336/183473
identifier_str_mv Milles, Stephan; Dahms, Johannes; Soldera, Marcos Maximiliano; Lasagni, Andrés F.; Stable superhydrophobic aluminum surfaces based on laser-fabricated hierarchical textures; MDPI AG; Materials; 14; 1; 1-2021; 1-17
1996-1944
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3390/ma14010184
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI AG
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614289658216448
score 13.070432