Information theoretic methods for studying population codes
- Autores
- Ince, Robin A. A.; Senatore, Riccardo; Arabzadeh, Ehsan; Montani, Fernando Fabián; Diamond, Mathew E.; Panzeri, Stefano
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Population coding is the quantitative study of which algorithms or representations are used by thebrain to combine together and evaluate the messages carried by different neurons. Here, we review ani nformation-theoretic approach to population coding. We first discuss how to compute the information carried by simultaneously recorded neural populations, and in particular how to reduce the limitedsampling bias which affects the calculation of information from a limited amount of experimental data.We then discuss how to quantify the contribution of individual members of the population, or theinteraction between them, to the overall information encoded by the considered group of neurons. Wefocus in particular on evaluating what is the contribution of interactions up to any given order to thetotal information. We illustrate this formalism with applications to simulated data with realistic neuronal statistic and to real simultaneous recordings of multiple spike trains.
Fil: Ince, Robin A. A.. University of Manchester; Reino Unido
Fil: Senatore, Riccardo. University of Manchester; Reino Unido
Fil: Arabzadeh, Ehsan. University of New South Wales; Australia
Fil: Montani, Fernando Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Diamond, Mathew E.. No especifíca;
Fil: Panzeri, Stefano. No especifíca; - Materia
-
POPULATION CODES
INFORMATION THEORY
SAMPLING BIAS
SOMATOSENSORY CORTEX - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/280921
Ver los metadatos del registro completo
| id |
CONICETDig_6c4da80246d6f70d870875e085867d75 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/280921 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Information theoretic methods for studying population codesInce, Robin A. A.Senatore, RiccardoArabzadeh, EhsanMontani, Fernando FabiánDiamond, Mathew E.Panzeri, StefanoPOPULATION CODESINFORMATION THEORYSAMPLING BIASSOMATOSENSORY CORTEXhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Population coding is the quantitative study of which algorithms or representations are used by thebrain to combine together and evaluate the messages carried by different neurons. Here, we review ani nformation-theoretic approach to population coding. We first discuss how to compute the information carried by simultaneously recorded neural populations, and in particular how to reduce the limitedsampling bias which affects the calculation of information from a limited amount of experimental data.We then discuss how to quantify the contribution of individual members of the population, or theinteraction between them, to the overall information encoded by the considered group of neurons. Wefocus in particular on evaluating what is the contribution of interactions up to any given order to thetotal information. We illustrate this formalism with applications to simulated data with realistic neuronal statistic and to real simultaneous recordings of multiple spike trains.Fil: Ince, Robin A. A.. University of Manchester; Reino UnidoFil: Senatore, Riccardo. University of Manchester; Reino UnidoFil: Arabzadeh, Ehsan. University of New South Wales; AustraliaFil: Montani, Fernando Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Diamond, Mathew E.. No especifíca;Fil: Panzeri, Stefano. No especifíca;Pergamon-Elsevier Science Ltd2010-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/280921Ince, Robin A. A.; Senatore, Riccardo; Arabzadeh, Ehsan; Montani, Fernando Fabián; Diamond, Mathew E.; et al.; Information theoretic methods for studying population codes; Pergamon-Elsevier Science Ltd; Neural Networks; 23; 6; 8-2010; 713-7270893-6080CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0893608010001012info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neunet.2010.05.008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-02-06T12:45:16Zoai:ri.conicet.gov.ar:11336/280921instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-02-06 12:45:16.325CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Information theoretic methods for studying population codes |
| title |
Information theoretic methods for studying population codes |
| spellingShingle |
Information theoretic methods for studying population codes Ince, Robin A. A. POPULATION CODES INFORMATION THEORY SAMPLING BIAS SOMATOSENSORY CORTEX |
| title_short |
Information theoretic methods for studying population codes |
| title_full |
Information theoretic methods for studying population codes |
| title_fullStr |
Information theoretic methods for studying population codes |
| title_full_unstemmed |
Information theoretic methods for studying population codes |
| title_sort |
Information theoretic methods for studying population codes |
| dc.creator.none.fl_str_mv |
Ince, Robin A. A. Senatore, Riccardo Arabzadeh, Ehsan Montani, Fernando Fabián Diamond, Mathew E. Panzeri, Stefano |
| author |
Ince, Robin A. A. |
| author_facet |
Ince, Robin A. A. Senatore, Riccardo Arabzadeh, Ehsan Montani, Fernando Fabián Diamond, Mathew E. Panzeri, Stefano |
| author_role |
author |
| author2 |
Senatore, Riccardo Arabzadeh, Ehsan Montani, Fernando Fabián Diamond, Mathew E. Panzeri, Stefano |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
POPULATION CODES INFORMATION THEORY SAMPLING BIAS SOMATOSENSORY CORTEX |
| topic |
POPULATION CODES INFORMATION THEORY SAMPLING BIAS SOMATOSENSORY CORTEX |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Population coding is the quantitative study of which algorithms or representations are used by thebrain to combine together and evaluate the messages carried by different neurons. Here, we review ani nformation-theoretic approach to population coding. We first discuss how to compute the information carried by simultaneously recorded neural populations, and in particular how to reduce the limitedsampling bias which affects the calculation of information from a limited amount of experimental data.We then discuss how to quantify the contribution of individual members of the population, or theinteraction between them, to the overall information encoded by the considered group of neurons. Wefocus in particular on evaluating what is the contribution of interactions up to any given order to thetotal information. We illustrate this formalism with applications to simulated data with realistic neuronal statistic and to real simultaneous recordings of multiple spike trains. Fil: Ince, Robin A. A.. University of Manchester; Reino Unido Fil: Senatore, Riccardo. University of Manchester; Reino Unido Fil: Arabzadeh, Ehsan. University of New South Wales; Australia Fil: Montani, Fernando Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Diamond, Mathew E.. No especifíca; Fil: Panzeri, Stefano. No especifíca; |
| description |
Population coding is the quantitative study of which algorithms or representations are used by thebrain to combine together and evaluate the messages carried by different neurons. Here, we review ani nformation-theoretic approach to population coding. We first discuss how to compute the information carried by simultaneously recorded neural populations, and in particular how to reduce the limitedsampling bias which affects the calculation of information from a limited amount of experimental data.We then discuss how to quantify the contribution of individual members of the population, or theinteraction between them, to the overall information encoded by the considered group of neurons. Wefocus in particular on evaluating what is the contribution of interactions up to any given order to thetotal information. We illustrate this formalism with applications to simulated data with realistic neuronal statistic and to real simultaneous recordings of multiple spike trains. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/280921 Ince, Robin A. A.; Senatore, Riccardo; Arabzadeh, Ehsan; Montani, Fernando Fabián; Diamond, Mathew E.; et al.; Information theoretic methods for studying population codes; Pergamon-Elsevier Science Ltd; Neural Networks; 23; 6; 8-2010; 713-727 0893-6080 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/280921 |
| identifier_str_mv |
Ince, Robin A. A.; Senatore, Riccardo; Arabzadeh, Ehsan; Montani, Fernando Fabián; Diamond, Mathew E.; et al.; Information theoretic methods for studying population codes; Pergamon-Elsevier Science Ltd; Neural Networks; 23; 6; 8-2010; 713-727 0893-6080 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0893608010001012 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.neunet.2010.05.008 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
| publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1856403274577477632 |
| score |
13.11174 |