Correlated site-bond ensembles: Statistical equilibrium and finite size effects
- Autores
- López, Raúl Horacio; Vidales, Ana Maria; Zgrablich, Giorgio
- Año de publicación
- 2000
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work presents a Monte Carlo analysis of the propagation of correlation strength in site-bond square lattices generated through the dual site-bond model (DSBM), where the values of the property assigned to sites and bonds are sampled from two uniform density distributions that may have some overlapping area with each other. Correlations appear when a construction principle is established. Although this model has been extensively used in many physical applications, such as adsorption and surface diffusion on heterogeneous surfaces and percolation and transport processes in porous media, a careful study of the way correlated topology is settled on through the system was lacking. The dependence of the relaxation time needed to reach equilibrium and of the minimum size of the network to be used is established for different correlation strengths, represented by the overlapping parameter Ω. A more accurate empirical equation, relating the characteristic correlation length l0, corresponding to the spatial correlation function, and Ω, is found, than the one used in former applications of the DSBM.
Fil: López, Raúl Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Vidales, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Zgrablich, Giorgio. Universidad Nacional de San Luis; Argentina - Materia
-
Porous Media
Lattice
Simulation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/129518
Ver los metadatos del registro completo
id |
CONICETDig_6c29f79e0524b93a19db1dd0eaebee49 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/129518 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Correlated site-bond ensembles: Statistical equilibrium and finite size effectsLópez, Raúl HoracioVidales, Ana MariaZgrablich, GiorgioPorous MediaLatticeSimulationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1This work presents a Monte Carlo analysis of the propagation of correlation strength in site-bond square lattices generated through the dual site-bond model (DSBM), where the values of the property assigned to sites and bonds are sampled from two uniform density distributions that may have some overlapping area with each other. Correlations appear when a construction principle is established. Although this model has been extensively used in many physical applications, such as adsorption and surface diffusion on heterogeneous surfaces and percolation and transport processes in porous media, a careful study of the way correlated topology is settled on through the system was lacking. The dependence of the relaxation time needed to reach equilibrium and of the minimum size of the network to be used is established for different correlation strengths, represented by the overlapping parameter Ω. A more accurate empirical equation, relating the characteristic correlation length l0, corresponding to the spatial correlation function, and Ω, is found, than the one used in former applications of the DSBM.Fil: López, Raúl Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Vidales, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Zgrablich, Giorgio. Universidad Nacional de San Luis; ArgentinaAmerican Chemical Society2000-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/129518López, Raúl Horacio; Vidales, Ana Maria; Zgrablich, Giorgio; Correlated site-bond ensembles: Statistical equilibrium and finite size effects; American Chemical Society; Langmuir; 16; 7; 1-4-2000; 3441-34450743-74631520-5827CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/la991023yinfo:eu-repo/semantics/altIdentifier/doi/10.1021/la991023yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:44Zoai:ri.conicet.gov.ar:11336/129518instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:44.312CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Correlated site-bond ensembles: Statistical equilibrium and finite size effects |
title |
Correlated site-bond ensembles: Statistical equilibrium and finite size effects |
spellingShingle |
Correlated site-bond ensembles: Statistical equilibrium and finite size effects López, Raúl Horacio Porous Media Lattice Simulation |
title_short |
Correlated site-bond ensembles: Statistical equilibrium and finite size effects |
title_full |
Correlated site-bond ensembles: Statistical equilibrium and finite size effects |
title_fullStr |
Correlated site-bond ensembles: Statistical equilibrium and finite size effects |
title_full_unstemmed |
Correlated site-bond ensembles: Statistical equilibrium and finite size effects |
title_sort |
Correlated site-bond ensembles: Statistical equilibrium and finite size effects |
dc.creator.none.fl_str_mv |
López, Raúl Horacio Vidales, Ana Maria Zgrablich, Giorgio |
author |
López, Raúl Horacio |
author_facet |
López, Raúl Horacio Vidales, Ana Maria Zgrablich, Giorgio |
author_role |
author |
author2 |
Vidales, Ana Maria Zgrablich, Giorgio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Porous Media Lattice Simulation |
topic |
Porous Media Lattice Simulation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This work presents a Monte Carlo analysis of the propagation of correlation strength in site-bond square lattices generated through the dual site-bond model (DSBM), where the values of the property assigned to sites and bonds are sampled from two uniform density distributions that may have some overlapping area with each other. Correlations appear when a construction principle is established. Although this model has been extensively used in many physical applications, such as adsorption and surface diffusion on heterogeneous surfaces and percolation and transport processes in porous media, a careful study of the way correlated topology is settled on through the system was lacking. The dependence of the relaxation time needed to reach equilibrium and of the minimum size of the network to be used is established for different correlation strengths, represented by the overlapping parameter Ω. A more accurate empirical equation, relating the characteristic correlation length l0, corresponding to the spatial correlation function, and Ω, is found, than the one used in former applications of the DSBM. Fil: López, Raúl Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Vidales, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina Fil: Zgrablich, Giorgio. Universidad Nacional de San Luis; Argentina |
description |
This work presents a Monte Carlo analysis of the propagation of correlation strength in site-bond square lattices generated through the dual site-bond model (DSBM), where the values of the property assigned to sites and bonds are sampled from two uniform density distributions that may have some overlapping area with each other. Correlations appear when a construction principle is established. Although this model has been extensively used in many physical applications, such as adsorption and surface diffusion on heterogeneous surfaces and percolation and transport processes in porous media, a careful study of the way correlated topology is settled on through the system was lacking. The dependence of the relaxation time needed to reach equilibrium and of the minimum size of the network to be used is established for different correlation strengths, represented by the overlapping parameter Ω. A more accurate empirical equation, relating the characteristic correlation length l0, corresponding to the spatial correlation function, and Ω, is found, than the one used in former applications of the DSBM. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-04-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/129518 López, Raúl Horacio; Vidales, Ana Maria; Zgrablich, Giorgio; Correlated site-bond ensembles: Statistical equilibrium and finite size effects; American Chemical Society; Langmuir; 16; 7; 1-4-2000; 3441-3445 0743-7463 1520-5827 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/129518 |
identifier_str_mv |
López, Raúl Horacio; Vidales, Ana Maria; Zgrablich, Giorgio; Correlated site-bond ensembles: Statistical equilibrium and finite size effects; American Chemical Society; Langmuir; 16; 7; 1-4-2000; 3441-3445 0743-7463 1520-5827 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/la991023y info:eu-repo/semantics/altIdentifier/doi/10.1021/la991023y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613999602171904 |
score |
13.070432 |