Correlated site-bond ensembles: Statistical equilibrium and finite size effects

Autores
López, Raúl Horacio; Vidales, Ana Maria; Zgrablich, Giorgio
Año de publicación
2000
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This work presents a Monte Carlo analysis of the propagation of correlation strength in site-bond square lattices generated through the dual site-bond model (DSBM), where the values of the property assigned to sites and bonds are sampled from two uniform density distributions that may have some overlapping area with each other. Correlations appear when a construction principle is established. Although this model has been extensively used in many physical applications, such as adsorption and surface diffusion on heterogeneous surfaces and percolation and transport processes in porous media, a careful study of the way correlated topology is settled on through the system was lacking. The dependence of the relaxation time needed to reach equilibrium and of the minimum size of the network to be used is established for different correlation strengths, represented by the overlapping parameter Ω. A more accurate empirical equation, relating the characteristic correlation length l0, corresponding to the spatial correlation function, and Ω, is found, than the one used in former applications of the DSBM.
Fil: López, Raúl Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Vidales, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Zgrablich, Giorgio. Universidad Nacional de San Luis; Argentina
Materia
Porous Media
Lattice
Simulation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/129518

id CONICETDig_6c29f79e0524b93a19db1dd0eaebee49
oai_identifier_str oai:ri.conicet.gov.ar:11336/129518
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Correlated site-bond ensembles: Statistical equilibrium and finite size effectsLópez, Raúl HoracioVidales, Ana MariaZgrablich, GiorgioPorous MediaLatticeSimulationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1This work presents a Monte Carlo analysis of the propagation of correlation strength in site-bond square lattices generated through the dual site-bond model (DSBM), where the values of the property assigned to sites and bonds are sampled from two uniform density distributions that may have some overlapping area with each other. Correlations appear when a construction principle is established. Although this model has been extensively used in many physical applications, such as adsorption and surface diffusion on heterogeneous surfaces and percolation and transport processes in porous media, a careful study of the way correlated topology is settled on through the system was lacking. The dependence of the relaxation time needed to reach equilibrium and of the minimum size of the network to be used is established for different correlation strengths, represented by the overlapping parameter Ω. A more accurate empirical equation, relating the characteristic correlation length l0, corresponding to the spatial correlation function, and Ω, is found, than the one used in former applications of the DSBM.Fil: López, Raúl Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Vidales, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Zgrablich, Giorgio. Universidad Nacional de San Luis; ArgentinaAmerican Chemical Society2000-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/129518López, Raúl Horacio; Vidales, Ana Maria; Zgrablich, Giorgio; Correlated site-bond ensembles: Statistical equilibrium and finite size effects; American Chemical Society; Langmuir; 16; 7; 1-4-2000; 3441-34450743-74631520-5827CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/la991023yinfo:eu-repo/semantics/altIdentifier/doi/10.1021/la991023yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:44Zoai:ri.conicet.gov.ar:11336/129518instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:44.312CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Correlated site-bond ensembles: Statistical equilibrium and finite size effects
title Correlated site-bond ensembles: Statistical equilibrium and finite size effects
spellingShingle Correlated site-bond ensembles: Statistical equilibrium and finite size effects
López, Raúl Horacio
Porous Media
Lattice
Simulation
title_short Correlated site-bond ensembles: Statistical equilibrium and finite size effects
title_full Correlated site-bond ensembles: Statistical equilibrium and finite size effects
title_fullStr Correlated site-bond ensembles: Statistical equilibrium and finite size effects
title_full_unstemmed Correlated site-bond ensembles: Statistical equilibrium and finite size effects
title_sort Correlated site-bond ensembles: Statistical equilibrium and finite size effects
dc.creator.none.fl_str_mv López, Raúl Horacio
Vidales, Ana Maria
Zgrablich, Giorgio
author López, Raúl Horacio
author_facet López, Raúl Horacio
Vidales, Ana Maria
Zgrablich, Giorgio
author_role author
author2 Vidales, Ana Maria
Zgrablich, Giorgio
author2_role author
author
dc.subject.none.fl_str_mv Porous Media
Lattice
Simulation
topic Porous Media
Lattice
Simulation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This work presents a Monte Carlo analysis of the propagation of correlation strength in site-bond square lattices generated through the dual site-bond model (DSBM), where the values of the property assigned to sites and bonds are sampled from two uniform density distributions that may have some overlapping area with each other. Correlations appear when a construction principle is established. Although this model has been extensively used in many physical applications, such as adsorption and surface diffusion on heterogeneous surfaces and percolation and transport processes in porous media, a careful study of the way correlated topology is settled on through the system was lacking. The dependence of the relaxation time needed to reach equilibrium and of the minimum size of the network to be used is established for different correlation strengths, represented by the overlapping parameter Ω. A more accurate empirical equation, relating the characteristic correlation length l0, corresponding to the spatial correlation function, and Ω, is found, than the one used in former applications of the DSBM.
Fil: López, Raúl Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Vidales, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; Argentina
Fil: Zgrablich, Giorgio. Universidad Nacional de San Luis; Argentina
description This work presents a Monte Carlo analysis of the propagation of correlation strength in site-bond square lattices generated through the dual site-bond model (DSBM), where the values of the property assigned to sites and bonds are sampled from two uniform density distributions that may have some overlapping area with each other. Correlations appear when a construction principle is established. Although this model has been extensively used in many physical applications, such as adsorption and surface diffusion on heterogeneous surfaces and percolation and transport processes in porous media, a careful study of the way correlated topology is settled on through the system was lacking. The dependence of the relaxation time needed to reach equilibrium and of the minimum size of the network to be used is established for different correlation strengths, represented by the overlapping parameter Ω. A more accurate empirical equation, relating the characteristic correlation length l0, corresponding to the spatial correlation function, and Ω, is found, than the one used in former applications of the DSBM.
publishDate 2000
dc.date.none.fl_str_mv 2000-04-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/129518
López, Raúl Horacio; Vidales, Ana Maria; Zgrablich, Giorgio; Correlated site-bond ensembles: Statistical equilibrium and finite size effects; American Chemical Society; Langmuir; 16; 7; 1-4-2000; 3441-3445
0743-7463
1520-5827
CONICET Digital
CONICET
url http://hdl.handle.net/11336/129518
identifier_str_mv López, Raúl Horacio; Vidales, Ana Maria; Zgrablich, Giorgio; Correlated site-bond ensembles: Statistical equilibrium and finite size effects; American Chemical Society; Langmuir; 16; 7; 1-4-2000; 3441-3445
0743-7463
1520-5827
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/la991023y
info:eu-repo/semantics/altIdentifier/doi/10.1021/la991023y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613999602171904
score 13.070432