A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models

Autores
Ackleh, Azmy S.; Lyons, Rainey; Saintier, Nicolas Bernard Claude
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a structured coagulation-fragmentation model which describes the population dynamics of oceanic phytoplankton. This model is formulated on the space of Radon measures equipped with the bounded Lipschitz norm and unifies the study of the discrete and continuous coagulation-fragmentation models. We prove that the model is well-posed and show it can reduce down to the classic discrete and continuous coagulation-fragmentation models. To understand the interplay between the physical processes of coagulation and fragmentation and the biological processes of growth, reproduction, and death, we establish a regularity result for the solutions and use it to show that stationary solutions are absolutely continuous under some conditions on model parameters. We develop a semi-discrete approximation scheme which conserves mass and prove its convergence to the unique weak solution. We then use the scheme to perform numerical simulations for the model.
Fil: Ackleh, Azmy S.. State University of Louisiana; Estados Unidos
Fil: Lyons, Rainey. State University of Louisiana; Estados Unidos
Fil: Saintier, Nicolas Bernard Claude. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
BOUNDED-LIPSCHITZ NORM
COAGULATION-FRAGMENTATION EQUATIONS
CONSERVATION OF MASS
NON-NEGATIVE RADON MEASURES
SEMI-DISCRETE SCHEMES
STRUCTURED POPULATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/162720

id CONICETDig_6c1031ff8090f40b8cf9ec3d54b44247
oai_identifier_str oai:ri.conicet.gov.ar:11336/162720
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous modelsAckleh, Azmy S.Lyons, RaineySaintier, Nicolas Bernard ClaudeBOUNDED-LIPSCHITZ NORMCOAGULATION-FRAGMENTATION EQUATIONSCONSERVATION OF MASSNON-NEGATIVE RADON MEASURESSEMI-DISCRETE SCHEMESSTRUCTURED POPULATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present a structured coagulation-fragmentation model which describes the population dynamics of oceanic phytoplankton. This model is formulated on the space of Radon measures equipped with the bounded Lipschitz norm and unifies the study of the discrete and continuous coagulation-fragmentation models. We prove that the model is well-posed and show it can reduce down to the classic discrete and continuous coagulation-fragmentation models. To understand the interplay between the physical processes of coagulation and fragmentation and the biological processes of growth, reproduction, and death, we establish a regularity result for the solutions and use it to show that stationary solutions are absolutely continuous under some conditions on model parameters. We develop a semi-discrete approximation scheme which conserves mass and prove its convergence to the unique weak solution. We then use the scheme to perform numerical simulations for the model.Fil: Ackleh, Azmy S.. State University of Louisiana; Estados UnidosFil: Lyons, Rainey. State University of Louisiana; Estados UnidosFil: Saintier, Nicolas Bernard Claude. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaEDP Sciences2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/162720Ackleh, Azmy S.; Lyons, Rainey; Saintier, Nicolas Bernard Claude; A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models; EDP Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 55; 5; 9-2021; 2473-25010764-583X2804-7214CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/m2an/2021061info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:45Zoai:ri.conicet.gov.ar:11336/162720instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:45.524CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models
title A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models
spellingShingle A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models
Ackleh, Azmy S.
BOUNDED-LIPSCHITZ NORM
COAGULATION-FRAGMENTATION EQUATIONS
CONSERVATION OF MASS
NON-NEGATIVE RADON MEASURES
SEMI-DISCRETE SCHEMES
STRUCTURED POPULATIONS
title_short A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models
title_full A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models
title_fullStr A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models
title_full_unstemmed A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models
title_sort A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models
dc.creator.none.fl_str_mv Ackleh, Azmy S.
Lyons, Rainey
Saintier, Nicolas Bernard Claude
author Ackleh, Azmy S.
author_facet Ackleh, Azmy S.
Lyons, Rainey
Saintier, Nicolas Bernard Claude
author_role author
author2 Lyons, Rainey
Saintier, Nicolas Bernard Claude
author2_role author
author
dc.subject.none.fl_str_mv BOUNDED-LIPSCHITZ NORM
COAGULATION-FRAGMENTATION EQUATIONS
CONSERVATION OF MASS
NON-NEGATIVE RADON MEASURES
SEMI-DISCRETE SCHEMES
STRUCTURED POPULATIONS
topic BOUNDED-LIPSCHITZ NORM
COAGULATION-FRAGMENTATION EQUATIONS
CONSERVATION OF MASS
NON-NEGATIVE RADON MEASURES
SEMI-DISCRETE SCHEMES
STRUCTURED POPULATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a structured coagulation-fragmentation model which describes the population dynamics of oceanic phytoplankton. This model is formulated on the space of Radon measures equipped with the bounded Lipschitz norm and unifies the study of the discrete and continuous coagulation-fragmentation models. We prove that the model is well-posed and show it can reduce down to the classic discrete and continuous coagulation-fragmentation models. To understand the interplay between the physical processes of coagulation and fragmentation and the biological processes of growth, reproduction, and death, we establish a regularity result for the solutions and use it to show that stationary solutions are absolutely continuous under some conditions on model parameters. We develop a semi-discrete approximation scheme which conserves mass and prove its convergence to the unique weak solution. We then use the scheme to perform numerical simulations for the model.
Fil: Ackleh, Azmy S.. State University of Louisiana; Estados Unidos
Fil: Lyons, Rainey. State University of Louisiana; Estados Unidos
Fil: Saintier, Nicolas Bernard Claude. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We present a structured coagulation-fragmentation model which describes the population dynamics of oceanic phytoplankton. This model is formulated on the space of Radon measures equipped with the bounded Lipschitz norm and unifies the study of the discrete and continuous coagulation-fragmentation models. We prove that the model is well-posed and show it can reduce down to the classic discrete and continuous coagulation-fragmentation models. To understand the interplay between the physical processes of coagulation and fragmentation and the biological processes of growth, reproduction, and death, we establish a regularity result for the solutions and use it to show that stationary solutions are absolutely continuous under some conditions on model parameters. We develop a semi-discrete approximation scheme which conserves mass and prove its convergence to the unique weak solution. We then use the scheme to perform numerical simulations for the model.
publishDate 2021
dc.date.none.fl_str_mv 2021-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/162720
Ackleh, Azmy S.; Lyons, Rainey; Saintier, Nicolas Bernard Claude; A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models; EDP Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 55; 5; 9-2021; 2473-2501
0764-583X
2804-7214
CONICET Digital
CONICET
url http://hdl.handle.net/11336/162720
identifier_str_mv Ackleh, Azmy S.; Lyons, Rainey; Saintier, Nicolas Bernard Claude; A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models; EDP Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 55; 5; 9-2021; 2473-2501
0764-583X
2804-7214
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1051/m2an/2021061
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614190904377344
score 13.070432