A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models
- Autores
- Ackleh, Azmy S.; Lyons, Rainey; Saintier, Nicolas Bernard Claude
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a structured coagulation-fragmentation model which describes the population dynamics of oceanic phytoplankton. This model is formulated on the space of Radon measures equipped with the bounded Lipschitz norm and unifies the study of the discrete and continuous coagulation-fragmentation models. We prove that the model is well-posed and show it can reduce down to the classic discrete and continuous coagulation-fragmentation models. To understand the interplay between the physical processes of coagulation and fragmentation and the biological processes of growth, reproduction, and death, we establish a regularity result for the solutions and use it to show that stationary solutions are absolutely continuous under some conditions on model parameters. We develop a semi-discrete approximation scheme which conserves mass and prove its convergence to the unique weak solution. We then use the scheme to perform numerical simulations for the model.
Fil: Ackleh, Azmy S.. State University of Louisiana; Estados Unidos
Fil: Lyons, Rainey. State University of Louisiana; Estados Unidos
Fil: Saintier, Nicolas Bernard Claude. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
BOUNDED-LIPSCHITZ NORM
COAGULATION-FRAGMENTATION EQUATIONS
CONSERVATION OF MASS
NON-NEGATIVE RADON MEASURES
SEMI-DISCRETE SCHEMES
STRUCTURED POPULATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/162720
Ver los metadatos del registro completo
id |
CONICETDig_6c1031ff8090f40b8cf9ec3d54b44247 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/162720 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous modelsAckleh, Azmy S.Lyons, RaineySaintier, Nicolas Bernard ClaudeBOUNDED-LIPSCHITZ NORMCOAGULATION-FRAGMENTATION EQUATIONSCONSERVATION OF MASSNON-NEGATIVE RADON MEASURESSEMI-DISCRETE SCHEMESSTRUCTURED POPULATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present a structured coagulation-fragmentation model which describes the population dynamics of oceanic phytoplankton. This model is formulated on the space of Radon measures equipped with the bounded Lipschitz norm and unifies the study of the discrete and continuous coagulation-fragmentation models. We prove that the model is well-posed and show it can reduce down to the classic discrete and continuous coagulation-fragmentation models. To understand the interplay between the physical processes of coagulation and fragmentation and the biological processes of growth, reproduction, and death, we establish a regularity result for the solutions and use it to show that stationary solutions are absolutely continuous under some conditions on model parameters. We develop a semi-discrete approximation scheme which conserves mass and prove its convergence to the unique weak solution. We then use the scheme to perform numerical simulations for the model.Fil: Ackleh, Azmy S.. State University of Louisiana; Estados UnidosFil: Lyons, Rainey. State University of Louisiana; Estados UnidosFil: Saintier, Nicolas Bernard Claude. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaEDP Sciences2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/162720Ackleh, Azmy S.; Lyons, Rainey; Saintier, Nicolas Bernard Claude; A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models; EDP Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 55; 5; 9-2021; 2473-25010764-583X2804-7214CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/m2an/2021061info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:20:45Zoai:ri.conicet.gov.ar:11336/162720instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:20:45.524CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models |
title |
A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models |
spellingShingle |
A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models Ackleh, Azmy S. BOUNDED-LIPSCHITZ NORM COAGULATION-FRAGMENTATION EQUATIONS CONSERVATION OF MASS NON-NEGATIVE RADON MEASURES SEMI-DISCRETE SCHEMES STRUCTURED POPULATIONS |
title_short |
A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models |
title_full |
A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models |
title_fullStr |
A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models |
title_full_unstemmed |
A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models |
title_sort |
A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models |
dc.creator.none.fl_str_mv |
Ackleh, Azmy S. Lyons, Rainey Saintier, Nicolas Bernard Claude |
author |
Ackleh, Azmy S. |
author_facet |
Ackleh, Azmy S. Lyons, Rainey Saintier, Nicolas Bernard Claude |
author_role |
author |
author2 |
Lyons, Rainey Saintier, Nicolas Bernard Claude |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BOUNDED-LIPSCHITZ NORM COAGULATION-FRAGMENTATION EQUATIONS CONSERVATION OF MASS NON-NEGATIVE RADON MEASURES SEMI-DISCRETE SCHEMES STRUCTURED POPULATIONS |
topic |
BOUNDED-LIPSCHITZ NORM COAGULATION-FRAGMENTATION EQUATIONS CONSERVATION OF MASS NON-NEGATIVE RADON MEASURES SEMI-DISCRETE SCHEMES STRUCTURED POPULATIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a structured coagulation-fragmentation model which describes the population dynamics of oceanic phytoplankton. This model is formulated on the space of Radon measures equipped with the bounded Lipschitz norm and unifies the study of the discrete and continuous coagulation-fragmentation models. We prove that the model is well-posed and show it can reduce down to the classic discrete and continuous coagulation-fragmentation models. To understand the interplay between the physical processes of coagulation and fragmentation and the biological processes of growth, reproduction, and death, we establish a regularity result for the solutions and use it to show that stationary solutions are absolutely continuous under some conditions on model parameters. We develop a semi-discrete approximation scheme which conserves mass and prove its convergence to the unique weak solution. We then use the scheme to perform numerical simulations for the model. Fil: Ackleh, Azmy S.. State University of Louisiana; Estados Unidos Fil: Lyons, Rainey. State University of Louisiana; Estados Unidos Fil: Saintier, Nicolas Bernard Claude. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We present a structured coagulation-fragmentation model which describes the population dynamics of oceanic phytoplankton. This model is formulated on the space of Radon measures equipped with the bounded Lipschitz norm and unifies the study of the discrete and continuous coagulation-fragmentation models. We prove that the model is well-posed and show it can reduce down to the classic discrete and continuous coagulation-fragmentation models. To understand the interplay between the physical processes of coagulation and fragmentation and the biological processes of growth, reproduction, and death, we establish a regularity result for the solutions and use it to show that stationary solutions are absolutely continuous under some conditions on model parameters. We develop a semi-discrete approximation scheme which conserves mass and prove its convergence to the unique weak solution. We then use the scheme to perform numerical simulations for the model. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/162720 Ackleh, Azmy S.; Lyons, Rainey; Saintier, Nicolas Bernard Claude; A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models; EDP Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 55; 5; 9-2021; 2473-2501 0764-583X 2804-7214 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/162720 |
identifier_str_mv |
Ackleh, Azmy S.; Lyons, Rainey; Saintier, Nicolas Bernard Claude; A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models; EDP Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 55; 5; 9-2021; 2473-2501 0764-583X 2804-7214 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1051/m2an/2021061 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614190904377344 |
score |
13.070432 |