Scaling properties of a ferromagnetic thin film model at the depinning transition

Autores
Torres Rasmussen, Marcos Fernando; Buceta, Ruben Carlos
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we perform a detailed study of the scaling properties of a ferromagnetic thin film model. Recently, interest has increased in the scaling properties of the magnetic domain wall (MDW) motion in disordered media when an external driving field is present. We consider a (1+1)-dimensional model, based on evolution rules, able to describe the MDW avalanches. The global interface width of this model shows Family-Vicsek scaling with roughness exponent ζ ≃ 1.585 and growth exponent β ≃ 0.975. In contrast, this model shows scaling anomalies in the interface local properties characteristic of other systems with depinning transition of the MDW, e.g. the quenched Edwards-Wilkinson (QEW) equation and random-field Ising model (RFIM) with driving. We show that, at the depinning transition, the saturated average velocity vsat ∼ f^θ vanishes very slowly (with θ ≃ 0.037) when the reduced force f = p/p_c−1 → 0^+. The simulation results show that this model verifies all accepted scaling relations which relate the global exponents and the correlation length (or time) exponents, valid in systems with a depinning transition. Using the interface tilting method, we show that the model, close to the depinning transition, exhibits a nonlinearity similar to the one included in the Kardar-Parisi-Zhang (KPZ) equation. The nonlinear coefficient λ ∼ f^(−φ) with φ ≃ −1.118, which implies that λ → 0 as the depinning transition is approached, a similar qualitative behaviour to the driven RFIM. We conclude this work by discussing the main features of the model and the prospects opened by it.
Fil: Torres Rasmussen, Marcos Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Buceta, Ruben Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Materia
BARKHAUSEN NOISE
FERROMAGNETIC THIN FILMS
AVALANCHES
DEPINNING TRANSITION
LATTICE MODEL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/8229

id CONICETDig_6b9fb25462fc0a5d710fe6ceee7bfa0e
oai_identifier_str oai:ri.conicet.gov.ar:11336/8229
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Scaling properties of a ferromagnetic thin film model at the depinning transitionTorres Rasmussen, Marcos FernandoBuceta, Ruben CarlosBARKHAUSEN NOISEFERROMAGNETIC THIN FILMSAVALANCHESDEPINNING TRANSITIONLATTICE MODELhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this paper, we perform a detailed study of the scaling properties of a ferromagnetic thin film model. Recently, interest has increased in the scaling properties of the magnetic domain wall (MDW) motion in disordered media when an external driving field is present. We consider a (1+1)-dimensional model, based on evolution rules, able to describe the MDW avalanches. The global interface width of this model shows Family-Vicsek scaling with roughness exponent ζ ≃ 1.585 and growth exponent β ≃ 0.975. In contrast, this model shows scaling anomalies in the interface local properties characteristic of other systems with depinning transition of the MDW, e.g. the quenched Edwards-Wilkinson (QEW) equation and random-field Ising model (RFIM) with driving. We show that, at the depinning transition, the saturated average velocity vsat ∼ f^θ vanishes very slowly (with θ ≃ 0.037) when the reduced force f = p/p_c−1 → 0^+. The simulation results show that this model verifies all accepted scaling relations which relate the global exponents and the correlation length (or time) exponents, valid in systems with a depinning transition. Using the interface tilting method, we show that the model, close to the depinning transition, exhibits a nonlinearity similar to the one included in the Kardar-Parisi-Zhang (KPZ) equation. The nonlinear coefficient λ ∼ f^(−φ) with φ ≃ −1.118, which implies that λ → 0 as the depinning transition is approached, a similar qualitative behaviour to the driven RFIM. We conclude this work by discussing the main features of the model and the prospects opened by it.Fil: Torres Rasmussen, Marcos Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Buceta, Ruben Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaIop Publishing2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8229Torres Rasmussen, Marcos Fernando; Buceta, Ruben Carlos; Scaling properties of a ferromagnetic thin film model at the depinning transition; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2015; 10; 10-2015; 1-131742-5468enginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/2015/10/P10015info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1505.05223v2info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2015/10/P10015info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:47Zoai:ri.conicet.gov.ar:11336/8229instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:47.781CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Scaling properties of a ferromagnetic thin film model at the depinning transition
title Scaling properties of a ferromagnetic thin film model at the depinning transition
spellingShingle Scaling properties of a ferromagnetic thin film model at the depinning transition
Torres Rasmussen, Marcos Fernando
BARKHAUSEN NOISE
FERROMAGNETIC THIN FILMS
AVALANCHES
DEPINNING TRANSITION
LATTICE MODEL
title_short Scaling properties of a ferromagnetic thin film model at the depinning transition
title_full Scaling properties of a ferromagnetic thin film model at the depinning transition
title_fullStr Scaling properties of a ferromagnetic thin film model at the depinning transition
title_full_unstemmed Scaling properties of a ferromagnetic thin film model at the depinning transition
title_sort Scaling properties of a ferromagnetic thin film model at the depinning transition
dc.creator.none.fl_str_mv Torres Rasmussen, Marcos Fernando
Buceta, Ruben Carlos
author Torres Rasmussen, Marcos Fernando
author_facet Torres Rasmussen, Marcos Fernando
Buceta, Ruben Carlos
author_role author
author2 Buceta, Ruben Carlos
author2_role author
dc.subject.none.fl_str_mv BARKHAUSEN NOISE
FERROMAGNETIC THIN FILMS
AVALANCHES
DEPINNING TRANSITION
LATTICE MODEL
topic BARKHAUSEN NOISE
FERROMAGNETIC THIN FILMS
AVALANCHES
DEPINNING TRANSITION
LATTICE MODEL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, we perform a detailed study of the scaling properties of a ferromagnetic thin film model. Recently, interest has increased in the scaling properties of the magnetic domain wall (MDW) motion in disordered media when an external driving field is present. We consider a (1+1)-dimensional model, based on evolution rules, able to describe the MDW avalanches. The global interface width of this model shows Family-Vicsek scaling with roughness exponent ζ ≃ 1.585 and growth exponent β ≃ 0.975. In contrast, this model shows scaling anomalies in the interface local properties characteristic of other systems with depinning transition of the MDW, e.g. the quenched Edwards-Wilkinson (QEW) equation and random-field Ising model (RFIM) with driving. We show that, at the depinning transition, the saturated average velocity vsat ∼ f^θ vanishes very slowly (with θ ≃ 0.037) when the reduced force f = p/p_c−1 → 0^+. The simulation results show that this model verifies all accepted scaling relations which relate the global exponents and the correlation length (or time) exponents, valid in systems with a depinning transition. Using the interface tilting method, we show that the model, close to the depinning transition, exhibits a nonlinearity similar to the one included in the Kardar-Parisi-Zhang (KPZ) equation. The nonlinear coefficient λ ∼ f^(−φ) with φ ≃ −1.118, which implies that λ → 0 as the depinning transition is approached, a similar qualitative behaviour to the driven RFIM. We conclude this work by discussing the main features of the model and the prospects opened by it.
Fil: Torres Rasmussen, Marcos Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Buceta, Ruben Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
description In this paper, we perform a detailed study of the scaling properties of a ferromagnetic thin film model. Recently, interest has increased in the scaling properties of the magnetic domain wall (MDW) motion in disordered media when an external driving field is present. We consider a (1+1)-dimensional model, based on evolution rules, able to describe the MDW avalanches. The global interface width of this model shows Family-Vicsek scaling with roughness exponent ζ ≃ 1.585 and growth exponent β ≃ 0.975. In contrast, this model shows scaling anomalies in the interface local properties characteristic of other systems with depinning transition of the MDW, e.g. the quenched Edwards-Wilkinson (QEW) equation and random-field Ising model (RFIM) with driving. We show that, at the depinning transition, the saturated average velocity vsat ∼ f^θ vanishes very slowly (with θ ≃ 0.037) when the reduced force f = p/p_c−1 → 0^+. The simulation results show that this model verifies all accepted scaling relations which relate the global exponents and the correlation length (or time) exponents, valid in systems with a depinning transition. Using the interface tilting method, we show that the model, close to the depinning transition, exhibits a nonlinearity similar to the one included in the Kardar-Parisi-Zhang (KPZ) equation. The nonlinear coefficient λ ∼ f^(−φ) with φ ≃ −1.118, which implies that λ → 0 as the depinning transition is approached, a similar qualitative behaviour to the driven RFIM. We conclude this work by discussing the main features of the model and the prospects opened by it.
publishDate 2015
dc.date.none.fl_str_mv 2015-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/8229
Torres Rasmussen, Marcos Fernando; Buceta, Ruben Carlos; Scaling properties of a ferromagnetic thin film model at the depinning transition; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2015; 10; 10-2015; 1-13
1742-5468
url http://hdl.handle.net/11336/8229
identifier_str_mv Torres Rasmussen, Marcos Fernando; Buceta, Ruben Carlos; Scaling properties of a ferromagnetic thin film model at the depinning transition; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2015; 10; 10-2015; 1-13
1742-5468
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/2015/10/P10015
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1505.05223v2
info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2015/10/P10015
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Iop Publishing
publisher.none.fl_str_mv Iop Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268689120886784
score 13.13397