Sufficient dimension reduction for censored predictors
- Autores
- Tomassi, Diego Rodolfo; Forzani, Liliana Maria; Bura, Efstathia; Pfeiffer, Ruth
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Motivated by a study conducted to evaluate the associations of 51 inflammatory markers and lung cancer risk, we propose several approaches of varying computational complexity for analyzing multiple correlated markers that are also censored due to lower and/or upper limits of detection, using likelihood-based sufficient dimension reduction (SDR) methods. We extend the theory and the likelihood-based SDR framework in two ways: (i) we accommodate censored predictors directly in the likelihood, and (ii) we incorporate variable selection. We find linear combinations that contain all the information that the correlated markers have on an outcome variable (i.e., are sufficient for modeling and prediction of the outcome) while accounting for censoring of the markers. These methods yield efficient estimators and can be applied to any type of outcome, including continuous and categorical. We illustrate and compare all methods using data from the motivating study and in simulations. We find that explicitly accounting for the censoring in the likelihood of the SDR methods can lead to appreciable gains in efficiency and prediction accuracy, and also outperformed multiple imputations combined with standard SDR.
Fil: Tomassi, Diego Rodolfo. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral; Argentina
Fil: Bura, Efstathia. The George Washington University; Estados Unidos
Fil: Pfeiffer, Ruth. National Cancer Institute; Estados Unidos - Materia
-
Informative Missingness
Limits of Detection
Missing Data
Penalized Likelihood
Shrinkage - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/71171
Ver los metadatos del registro completo
id |
CONICETDig_6b71527f1a4298ed25adf9fd6bd38a25 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/71171 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Sufficient dimension reduction for censored predictorsTomassi, Diego RodolfoForzani, Liliana MariaBura, EfstathiaPfeiffer, RuthInformative MissingnessLimits of DetectionMissing DataPenalized LikelihoodShrinkagehttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Motivated by a study conducted to evaluate the associations of 51 inflammatory markers and lung cancer risk, we propose several approaches of varying computational complexity for analyzing multiple correlated markers that are also censored due to lower and/or upper limits of detection, using likelihood-based sufficient dimension reduction (SDR) methods. We extend the theory and the likelihood-based SDR framework in two ways: (i) we accommodate censored predictors directly in the likelihood, and (ii) we incorporate variable selection. We find linear combinations that contain all the information that the correlated markers have on an outcome variable (i.e., are sufficient for modeling and prediction of the outcome) while accounting for censoring of the markers. These methods yield efficient estimators and can be applied to any type of outcome, including continuous and categorical. We illustrate and compare all methods using data from the motivating study and in simulations. We find that explicitly accounting for the censoring in the likelihood of the SDR methods can lead to appreciable gains in efficiency and prediction accuracy, and also outperformed multiple imputations combined with standard SDR.Fil: Tomassi, Diego Rodolfo. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral; ArgentinaFil: Bura, Efstathia. The George Washington University; Estados UnidosFil: Pfeiffer, Ruth. National Cancer Institute; Estados UnidosWiley Blackwell Publishing, Inc2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/71171Tomassi, Diego Rodolfo; Forzani, Liliana Maria; Bura, Efstathia; Pfeiffer, Ruth; Sufficient dimension reduction for censored predictors; Wiley Blackwell Publishing, Inc; Biometrics; 73; 1; 3-2017; 220-2310006-341XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/biom.12556info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/biom.12556info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6543825/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:38:53Zoai:ri.conicet.gov.ar:11336/71171instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:38:53.653CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Sufficient dimension reduction for censored predictors |
title |
Sufficient dimension reduction for censored predictors |
spellingShingle |
Sufficient dimension reduction for censored predictors Tomassi, Diego Rodolfo Informative Missingness Limits of Detection Missing Data Penalized Likelihood Shrinkage |
title_short |
Sufficient dimension reduction for censored predictors |
title_full |
Sufficient dimension reduction for censored predictors |
title_fullStr |
Sufficient dimension reduction for censored predictors |
title_full_unstemmed |
Sufficient dimension reduction for censored predictors |
title_sort |
Sufficient dimension reduction for censored predictors |
dc.creator.none.fl_str_mv |
Tomassi, Diego Rodolfo Forzani, Liliana Maria Bura, Efstathia Pfeiffer, Ruth |
author |
Tomassi, Diego Rodolfo |
author_facet |
Tomassi, Diego Rodolfo Forzani, Liliana Maria Bura, Efstathia Pfeiffer, Ruth |
author_role |
author |
author2 |
Forzani, Liliana Maria Bura, Efstathia Pfeiffer, Ruth |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Informative Missingness Limits of Detection Missing Data Penalized Likelihood Shrinkage |
topic |
Informative Missingness Limits of Detection Missing Data Penalized Likelihood Shrinkage |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Motivated by a study conducted to evaluate the associations of 51 inflammatory markers and lung cancer risk, we propose several approaches of varying computational complexity for analyzing multiple correlated markers that are also censored due to lower and/or upper limits of detection, using likelihood-based sufficient dimension reduction (SDR) methods. We extend the theory and the likelihood-based SDR framework in two ways: (i) we accommodate censored predictors directly in the likelihood, and (ii) we incorporate variable selection. We find linear combinations that contain all the information that the correlated markers have on an outcome variable (i.e., are sufficient for modeling and prediction of the outcome) while accounting for censoring of the markers. These methods yield efficient estimators and can be applied to any type of outcome, including continuous and categorical. We illustrate and compare all methods using data from the motivating study and in simulations. We find that explicitly accounting for the censoring in the likelihood of the SDR methods can lead to appreciable gains in efficiency and prediction accuracy, and also outperformed multiple imputations combined with standard SDR. Fil: Tomassi, Diego Rodolfo. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral; Argentina Fil: Bura, Efstathia. The George Washington University; Estados Unidos Fil: Pfeiffer, Ruth. National Cancer Institute; Estados Unidos |
description |
Motivated by a study conducted to evaluate the associations of 51 inflammatory markers and lung cancer risk, we propose several approaches of varying computational complexity for analyzing multiple correlated markers that are also censored due to lower and/or upper limits of detection, using likelihood-based sufficient dimension reduction (SDR) methods. We extend the theory and the likelihood-based SDR framework in two ways: (i) we accommodate censored predictors directly in the likelihood, and (ii) we incorporate variable selection. We find linear combinations that contain all the information that the correlated markers have on an outcome variable (i.e., are sufficient for modeling and prediction of the outcome) while accounting for censoring of the markers. These methods yield efficient estimators and can be applied to any type of outcome, including continuous and categorical. We illustrate and compare all methods using data from the motivating study and in simulations. We find that explicitly accounting for the censoring in the likelihood of the SDR methods can lead to appreciable gains in efficiency and prediction accuracy, and also outperformed multiple imputations combined with standard SDR. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/71171 Tomassi, Diego Rodolfo; Forzani, Liliana Maria; Bura, Efstathia; Pfeiffer, Ruth; Sufficient dimension reduction for censored predictors; Wiley Blackwell Publishing, Inc; Biometrics; 73; 1; 3-2017; 220-231 0006-341X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/71171 |
identifier_str_mv |
Tomassi, Diego Rodolfo; Forzani, Liliana Maria; Bura, Efstathia; Pfeiffer, Ruth; Sufficient dimension reduction for censored predictors; Wiley Blackwell Publishing, Inc; Biometrics; 73; 1; 3-2017; 220-231 0006-341X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1111/biom.12556 info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/biom.12556 info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6543825/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614412838633472 |
score |
13.070432 |