Direct Observation of Single Layer Graphene Oxide Reduction through Spatially Resolved, Single Sheet Absorption/Emission Microscopy

Autores
Sokolov, Denis A.; Morozov, Yurii V.; McDonald, Matthew P.; Vietmeyer, Felix; Hodak, Jose Hector; Kuno, Masaru
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Laser reduction of graphene oxide (GO) offers unique opportunities for the rapid, nonchemical production of graphene. By tuning relevant reduction parameters, the band gap and conductivity of reduced GO can be precisely controlled. In situ monitoring of single layer GO reduction is therefore essential. In this report, we show the direct observation of laser-induced, single layer GO reduction through correlated changes to its absorption and emission. Absorption/emission movies illustrate the initial stages of single layer GO reduction, its transition to reduced-GO (rGO) as well as its subsequent decomposition upon prolonged laser illumination. These studies reveal GO’s photoreduction life cycle and through it native GO/rGO absorption coefficients, their intrasheet distributions as well as their spatial heterogeneities. Extracted absorption coefficients for unreduced GO are α405 nm ≈ 6.5 ± 1.1 × 104 cm–1, α520 nm ≈ 2.1 ± 0.4 × 104 cm–1, and α640 nm ≈ 1.1 ± 0.3 × 104 cm–1 while corresponding rGO α-values are α405 nm ≈ 21.6 ± 0.6 × 104 cm–1, α520 nm ≈ 16.9 ± 0.4 × 104 cm–1, and α640 nm ≈ 14.5 ± 0.4 × 104 cm–1. More importantly, the correlated absorption/emission imaging provides us with unprecedented insight into GO’s underlying photoreduction mechanism, given our ability to spatially resolve its kinetics and to connect local rate constants to activation energies. On a broader level, the developed absorption imaging is general and can be applied toward investigating the optical properties of other two-dimensional materials, especially those that are nonemissive and are invisible to current single molecule optical techniques.
Fil: Sokolov, Denis A.. University Of Notre Dame-Indiana; Estados Unidos
Fil: Morozov, Yurii V.. University Of Notre Dame-Indiana; Estados Unidos. Taras Shevchenko National University of Kiev; Rusia
Fil: McDonald, Matthew P.. University Of Notre Dame-Indiana; Estados Unidos
Fil: Vietmeyer, Felix. University Of Notre Dame-Indiana; Estados Unidos
Fil: Hodak, Jose Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Kuno, Masaru. University Of Notre Dame-Indiana; Estados Unidos
Materia
Graphene Oxide
Reduced Graphene Oxide
Photolysis
Absorption
Emission
Absorption Coefficient
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/31726

id CONICETDig_6b2e74b813f67f0ccc463627aaf2bd75
oai_identifier_str oai:ri.conicet.gov.ar:11336/31726
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Direct Observation of Single Layer Graphene Oxide Reduction through Spatially Resolved, Single Sheet Absorption/Emission MicroscopySokolov, Denis A.Morozov, Yurii V.McDonald, Matthew P.Vietmeyer, FelixHodak, Jose HectorKuno, MasaruGraphene OxideReduced Graphene OxidePhotolysisAbsorptionEmissionAbsorption Coefficienthttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Laser reduction of graphene oxide (GO) offers unique opportunities for the rapid, nonchemical production of graphene. By tuning relevant reduction parameters, the band gap and conductivity of reduced GO can be precisely controlled. In situ monitoring of single layer GO reduction is therefore essential. In this report, we show the direct observation of laser-induced, single layer GO reduction through correlated changes to its absorption and emission. Absorption/emission movies illustrate the initial stages of single layer GO reduction, its transition to reduced-GO (rGO) as well as its subsequent decomposition upon prolonged laser illumination. These studies reveal GO’s photoreduction life cycle and through it native GO/rGO absorption coefficients, their intrasheet distributions as well as their spatial heterogeneities. Extracted absorption coefficients for unreduced GO are α405 nm ≈ 6.5 ± 1.1 × 104 cm–1, α520 nm ≈ 2.1 ± 0.4 × 104 cm–1, and α640 nm ≈ 1.1 ± 0.3 × 104 cm–1 while corresponding rGO α-values are α405 nm ≈ 21.6 ± 0.6 × 104 cm–1, α520 nm ≈ 16.9 ± 0.4 × 104 cm–1, and α640 nm ≈ 14.5 ± 0.4 × 104 cm–1. More importantly, the correlated absorption/emission imaging provides us with unprecedented insight into GO’s underlying photoreduction mechanism, given our ability to spatially resolve its kinetics and to connect local rate constants to activation energies. On a broader level, the developed absorption imaging is general and can be applied toward investigating the optical properties of other two-dimensional materials, especially those that are nonemissive and are invisible to current single molecule optical techniques.Fil: Sokolov, Denis A.. University Of Notre Dame-Indiana; Estados UnidosFil: Morozov, Yurii V.. University Of Notre Dame-Indiana; Estados Unidos. Taras Shevchenko National University of Kiev; RusiaFil: McDonald, Matthew P.. University Of Notre Dame-Indiana; Estados UnidosFil: Vietmeyer, Felix. University Of Notre Dame-Indiana; Estados UnidosFil: Hodak, Jose Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Kuno, Masaru. University Of Notre Dame-Indiana; Estados UnidosAmerican Chemical Society2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31726Kuno, Masaru; Hodak, Jose Hector; Vietmeyer, Felix; McDonald, Matthew P.; Morozov, Yurii V.; Sokolov, Denis A.; et al.; Direct Observation of Single Layer Graphene Oxide Reduction through Spatially Resolved, Single Sheet Absorption/Emission Microscopy; American Chemical Society; Nano Letters; 14; 6; 5-2014; 3172-31791530-6984CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/nl500485ninfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/nl500485ninfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:01Zoai:ri.conicet.gov.ar:11336/31726instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:02.293CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Direct Observation of Single Layer Graphene Oxide Reduction through Spatially Resolved, Single Sheet Absorption/Emission Microscopy
title Direct Observation of Single Layer Graphene Oxide Reduction through Spatially Resolved, Single Sheet Absorption/Emission Microscopy
spellingShingle Direct Observation of Single Layer Graphene Oxide Reduction through Spatially Resolved, Single Sheet Absorption/Emission Microscopy
Sokolov, Denis A.
Graphene Oxide
Reduced Graphene Oxide
Photolysis
Absorption
Emission
Absorption Coefficient
title_short Direct Observation of Single Layer Graphene Oxide Reduction through Spatially Resolved, Single Sheet Absorption/Emission Microscopy
title_full Direct Observation of Single Layer Graphene Oxide Reduction through Spatially Resolved, Single Sheet Absorption/Emission Microscopy
title_fullStr Direct Observation of Single Layer Graphene Oxide Reduction through Spatially Resolved, Single Sheet Absorption/Emission Microscopy
title_full_unstemmed Direct Observation of Single Layer Graphene Oxide Reduction through Spatially Resolved, Single Sheet Absorption/Emission Microscopy
title_sort Direct Observation of Single Layer Graphene Oxide Reduction through Spatially Resolved, Single Sheet Absorption/Emission Microscopy
dc.creator.none.fl_str_mv Sokolov, Denis A.
Morozov, Yurii V.
McDonald, Matthew P.
Vietmeyer, Felix
Hodak, Jose Hector
Kuno, Masaru
author Sokolov, Denis A.
author_facet Sokolov, Denis A.
Morozov, Yurii V.
McDonald, Matthew P.
Vietmeyer, Felix
Hodak, Jose Hector
Kuno, Masaru
author_role author
author2 Morozov, Yurii V.
McDonald, Matthew P.
Vietmeyer, Felix
Hodak, Jose Hector
Kuno, Masaru
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Graphene Oxide
Reduced Graphene Oxide
Photolysis
Absorption
Emission
Absorption Coefficient
topic Graphene Oxide
Reduced Graphene Oxide
Photolysis
Absorption
Emission
Absorption Coefficient
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Laser reduction of graphene oxide (GO) offers unique opportunities for the rapid, nonchemical production of graphene. By tuning relevant reduction parameters, the band gap and conductivity of reduced GO can be precisely controlled. In situ monitoring of single layer GO reduction is therefore essential. In this report, we show the direct observation of laser-induced, single layer GO reduction through correlated changes to its absorption and emission. Absorption/emission movies illustrate the initial stages of single layer GO reduction, its transition to reduced-GO (rGO) as well as its subsequent decomposition upon prolonged laser illumination. These studies reveal GO’s photoreduction life cycle and through it native GO/rGO absorption coefficients, their intrasheet distributions as well as their spatial heterogeneities. Extracted absorption coefficients for unreduced GO are α405 nm ≈ 6.5 ± 1.1 × 104 cm–1, α520 nm ≈ 2.1 ± 0.4 × 104 cm–1, and α640 nm ≈ 1.1 ± 0.3 × 104 cm–1 while corresponding rGO α-values are α405 nm ≈ 21.6 ± 0.6 × 104 cm–1, α520 nm ≈ 16.9 ± 0.4 × 104 cm–1, and α640 nm ≈ 14.5 ± 0.4 × 104 cm–1. More importantly, the correlated absorption/emission imaging provides us with unprecedented insight into GO’s underlying photoreduction mechanism, given our ability to spatially resolve its kinetics and to connect local rate constants to activation energies. On a broader level, the developed absorption imaging is general and can be applied toward investigating the optical properties of other two-dimensional materials, especially those that are nonemissive and are invisible to current single molecule optical techniques.
Fil: Sokolov, Denis A.. University Of Notre Dame-Indiana; Estados Unidos
Fil: Morozov, Yurii V.. University Of Notre Dame-Indiana; Estados Unidos. Taras Shevchenko National University of Kiev; Rusia
Fil: McDonald, Matthew P.. University Of Notre Dame-Indiana; Estados Unidos
Fil: Vietmeyer, Felix. University Of Notre Dame-Indiana; Estados Unidos
Fil: Hodak, Jose Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Kuno, Masaru. University Of Notre Dame-Indiana; Estados Unidos
description Laser reduction of graphene oxide (GO) offers unique opportunities for the rapid, nonchemical production of graphene. By tuning relevant reduction parameters, the band gap and conductivity of reduced GO can be precisely controlled. In situ monitoring of single layer GO reduction is therefore essential. In this report, we show the direct observation of laser-induced, single layer GO reduction through correlated changes to its absorption and emission. Absorption/emission movies illustrate the initial stages of single layer GO reduction, its transition to reduced-GO (rGO) as well as its subsequent decomposition upon prolonged laser illumination. These studies reveal GO’s photoreduction life cycle and through it native GO/rGO absorption coefficients, their intrasheet distributions as well as their spatial heterogeneities. Extracted absorption coefficients for unreduced GO are α405 nm ≈ 6.5 ± 1.1 × 104 cm–1, α520 nm ≈ 2.1 ± 0.4 × 104 cm–1, and α640 nm ≈ 1.1 ± 0.3 × 104 cm–1 while corresponding rGO α-values are α405 nm ≈ 21.6 ± 0.6 × 104 cm–1, α520 nm ≈ 16.9 ± 0.4 × 104 cm–1, and α640 nm ≈ 14.5 ± 0.4 × 104 cm–1. More importantly, the correlated absorption/emission imaging provides us with unprecedented insight into GO’s underlying photoreduction mechanism, given our ability to spatially resolve its kinetics and to connect local rate constants to activation energies. On a broader level, the developed absorption imaging is general and can be applied toward investigating the optical properties of other two-dimensional materials, especially those that are nonemissive and are invisible to current single molecule optical techniques.
publishDate 2014
dc.date.none.fl_str_mv 2014-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/31726
Kuno, Masaru; Hodak, Jose Hector; Vietmeyer, Felix; McDonald, Matthew P.; Morozov, Yurii V.; Sokolov, Denis A.; et al.; Direct Observation of Single Layer Graphene Oxide Reduction through Spatially Resolved, Single Sheet Absorption/Emission Microscopy; American Chemical Society; Nano Letters; 14; 6; 5-2014; 3172-3179
1530-6984
CONICET Digital
CONICET
url http://hdl.handle.net/11336/31726
identifier_str_mv Kuno, Masaru; Hodak, Jose Hector; Vietmeyer, Felix; McDonald, Matthew P.; Morozov, Yurii V.; Sokolov, Denis A.; et al.; Direct Observation of Single Layer Graphene Oxide Reduction through Spatially Resolved, Single Sheet Absorption/Emission Microscopy; American Chemical Society; Nano Letters; 14; 6; 5-2014; 3172-3179
1530-6984
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/nl500485n
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/nl500485n
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269261071908864
score 13.13397