Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff

Autores
Meunier, Cédric L.; Liess, Antonia; Andersson, Agneta; Brugel, Sonia; Paczkowska, Joanna Marianna; Rahman, Habib; Skoglund, Bjorn; Rowe, Owen F.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Climate change predictions indicate that coastal and estuarine environments will receive increased terrestrial runoff via increased river discharge. This discharge transports allochthonous material, containing bioavailable nutrients and light attenuating matter. Since light and nutrients are important drivers of basal production, their relative and absolute availability have important consequences for the base of the aquatic food web, with potential ramifications for higher trophic levels. Here, we investigated the effects of shifts in terrestrial organic matter and light availability on basal producers and their grazers. In twelve Baltic Sea mesocosms, we simulated the effects of increased river runoff alone and in combination. We manipulated light (clear/shade) and carbon (added/not added) in a fully factorial design, with three replicates. We assessed microzooplankton grazing preferences in each treatment to assess whether increased terrestrial organic matter input would: (1) decrease the phytoplankton to bacterial biomass ratio, (2) shift microzooplankton diet from phytoplankton to bacteria, and (3) affect microzooplankton biomass. We found that carbon addition, but not reduced light levels per se resulted in lower phytoplankton to bacteria biomass ratios. Microzooplankton generally showed a strong feeding preference for phytoplankton over bacteria, but, in carbon-amended mesocosms which favored bacteria, microzooplankton shifted their diet towards bacteria. Furthermore, low total prey availability corresponded with low microzooplankton biomass and the highest bacteria/phytoplankton ratio. Overall our results suggest that in shallow coastal waters, modified with allochthonous matter from river discharge, light attenuation may be inconsequential for the basal producer balance, whereas increased allochthonous carbon, especially if readily bioavailable, favors bacteria over phytoplankton. We conclude that climate change induced shifts at the base of the food web may alter energy mobilization to and the biomass of microzooplankton grazers.
Fil: Meunier, Cédric L.. Universidad de Umea; Suecia
Fil: Liess, Antonia. Universidad de Umea; Suecia. Halmstad University; Suecia
Fil: Andersson, Agneta. Universidad de Umea; Suecia. Umea Marine Sciences Centre; Suecia
Fil: Brugel, Sonia. Universidad de Umea; Suecia. Umea Marine Sciences Centre; Suecia
Fil: Paczkowska, Joanna Marianna. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Umea; Suecia. Umea Marine Sciences Centre; Suecia
Fil: Rahman, Habib. Universidad de Umea; Suecia
Fil: Skoglund, Bjorn. Universidad de Umea; Suecia
Fil: Rowe, Owen F.. Universidad de Umea; Suecia. Umea Marine Sciences Centre; Suecia
Materia
Bacteria
Competition
Food Quality
Microzooplankton
Phytoplankton
Trophic Interactions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/43011

id CONICETDig_6a958f5d2b08824a9e3d646aa5b94b45
oai_identifier_str oai:ri.conicet.gov.ar:11336/43011
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoffMeunier, Cédric L.Liess, AntoniaAndersson, AgnetaBrugel, SoniaPaczkowska, Joanna MariannaRahman, HabibSkoglund, BjornRowe, Owen F.BacteriaCompetitionFood QualityMicrozooplanktonPhytoplanktonTrophic Interactionshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Climate change predictions indicate that coastal and estuarine environments will receive increased terrestrial runoff via increased river discharge. This discharge transports allochthonous material, containing bioavailable nutrients and light attenuating matter. Since light and nutrients are important drivers of basal production, their relative and absolute availability have important consequences for the base of the aquatic food web, with potential ramifications for higher trophic levels. Here, we investigated the effects of shifts in terrestrial organic matter and light availability on basal producers and their grazers. In twelve Baltic Sea mesocosms, we simulated the effects of increased river runoff alone and in combination. We manipulated light (clear/shade) and carbon (added/not added) in a fully factorial design, with three replicates. We assessed microzooplankton grazing preferences in each treatment to assess whether increased terrestrial organic matter input would: (1) decrease the phytoplankton to bacterial biomass ratio, (2) shift microzooplankton diet from phytoplankton to bacteria, and (3) affect microzooplankton biomass. We found that carbon addition, but not reduced light levels per se resulted in lower phytoplankton to bacteria biomass ratios. Microzooplankton generally showed a strong feeding preference for phytoplankton over bacteria, but, in carbon-amended mesocosms which favored bacteria, microzooplankton shifted their diet towards bacteria. Furthermore, low total prey availability corresponded with low microzooplankton biomass and the highest bacteria/phytoplankton ratio. Overall our results suggest that in shallow coastal waters, modified with allochthonous matter from river discharge, light attenuation may be inconsequential for the basal producer balance, whereas increased allochthonous carbon, especially if readily bioavailable, favors bacteria over phytoplankton. We conclude that climate change induced shifts at the base of the food web may alter energy mobilization to and the biomass of microzooplankton grazers.Fil: Meunier, Cédric L.. Universidad de Umea; SueciaFil: Liess, Antonia. Universidad de Umea; Suecia. Halmstad University; SueciaFil: Andersson, Agneta. Universidad de Umea; Suecia. Umea Marine Sciences Centre; SueciaFil: Brugel, Sonia. Universidad de Umea; Suecia. Umea Marine Sciences Centre; SueciaFil: Paczkowska, Joanna Marianna. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Umea; Suecia. Umea Marine Sciences Centre; SueciaFil: Rahman, Habib. Universidad de Umea; SueciaFil: Skoglund, Bjorn. Universidad de Umea; SueciaFil: Rowe, Owen F.. Universidad de Umea; Suecia. Umea Marine Sciences Centre; SueciaElsevier2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/43011Meunier, Cédric L.; Liess, Antonia; Andersson, Agneta; Brugel, Sonia; Paczkowska, Joanna Marianna; et al.; Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff; Elsevier; Marine Environmental Research; 129; 8-2017; 236-2440141-1136CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.marenvres.2017.06.008info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S014111361730051Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:26Zoai:ri.conicet.gov.ar:11336/43011instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:26.492CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff
title Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff
spellingShingle Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff
Meunier, Cédric L.
Bacteria
Competition
Food Quality
Microzooplankton
Phytoplankton
Trophic Interactions
title_short Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff
title_full Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff
title_fullStr Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff
title_full_unstemmed Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff
title_sort Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff
dc.creator.none.fl_str_mv Meunier, Cédric L.
Liess, Antonia
Andersson, Agneta
Brugel, Sonia
Paczkowska, Joanna Marianna
Rahman, Habib
Skoglund, Bjorn
Rowe, Owen F.
author Meunier, Cédric L.
author_facet Meunier, Cédric L.
Liess, Antonia
Andersson, Agneta
Brugel, Sonia
Paczkowska, Joanna Marianna
Rahman, Habib
Skoglund, Bjorn
Rowe, Owen F.
author_role author
author2 Liess, Antonia
Andersson, Agneta
Brugel, Sonia
Paczkowska, Joanna Marianna
Rahman, Habib
Skoglund, Bjorn
Rowe, Owen F.
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Bacteria
Competition
Food Quality
Microzooplankton
Phytoplankton
Trophic Interactions
topic Bacteria
Competition
Food Quality
Microzooplankton
Phytoplankton
Trophic Interactions
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Climate change predictions indicate that coastal and estuarine environments will receive increased terrestrial runoff via increased river discharge. This discharge transports allochthonous material, containing bioavailable nutrients and light attenuating matter. Since light and nutrients are important drivers of basal production, their relative and absolute availability have important consequences for the base of the aquatic food web, with potential ramifications for higher trophic levels. Here, we investigated the effects of shifts in terrestrial organic matter and light availability on basal producers and their grazers. In twelve Baltic Sea mesocosms, we simulated the effects of increased river runoff alone and in combination. We manipulated light (clear/shade) and carbon (added/not added) in a fully factorial design, with three replicates. We assessed microzooplankton grazing preferences in each treatment to assess whether increased terrestrial organic matter input would: (1) decrease the phytoplankton to bacterial biomass ratio, (2) shift microzooplankton diet from phytoplankton to bacteria, and (3) affect microzooplankton biomass. We found that carbon addition, but not reduced light levels per se resulted in lower phytoplankton to bacteria biomass ratios. Microzooplankton generally showed a strong feeding preference for phytoplankton over bacteria, but, in carbon-amended mesocosms which favored bacteria, microzooplankton shifted their diet towards bacteria. Furthermore, low total prey availability corresponded with low microzooplankton biomass and the highest bacteria/phytoplankton ratio. Overall our results suggest that in shallow coastal waters, modified with allochthonous matter from river discharge, light attenuation may be inconsequential for the basal producer balance, whereas increased allochthonous carbon, especially if readily bioavailable, favors bacteria over phytoplankton. We conclude that climate change induced shifts at the base of the food web may alter energy mobilization to and the biomass of microzooplankton grazers.
Fil: Meunier, Cédric L.. Universidad de Umea; Suecia
Fil: Liess, Antonia. Universidad de Umea; Suecia. Halmstad University; Suecia
Fil: Andersson, Agneta. Universidad de Umea; Suecia. Umea Marine Sciences Centre; Suecia
Fil: Brugel, Sonia. Universidad de Umea; Suecia. Umea Marine Sciences Centre; Suecia
Fil: Paczkowska, Joanna Marianna. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Umea; Suecia. Umea Marine Sciences Centre; Suecia
Fil: Rahman, Habib. Universidad de Umea; Suecia
Fil: Skoglund, Bjorn. Universidad de Umea; Suecia
Fil: Rowe, Owen F.. Universidad de Umea; Suecia. Umea Marine Sciences Centre; Suecia
description Climate change predictions indicate that coastal and estuarine environments will receive increased terrestrial runoff via increased river discharge. This discharge transports allochthonous material, containing bioavailable nutrients and light attenuating matter. Since light and nutrients are important drivers of basal production, their relative and absolute availability have important consequences for the base of the aquatic food web, with potential ramifications for higher trophic levels. Here, we investigated the effects of shifts in terrestrial organic matter and light availability on basal producers and their grazers. In twelve Baltic Sea mesocosms, we simulated the effects of increased river runoff alone and in combination. We manipulated light (clear/shade) and carbon (added/not added) in a fully factorial design, with three replicates. We assessed microzooplankton grazing preferences in each treatment to assess whether increased terrestrial organic matter input would: (1) decrease the phytoplankton to bacterial biomass ratio, (2) shift microzooplankton diet from phytoplankton to bacteria, and (3) affect microzooplankton biomass. We found that carbon addition, but not reduced light levels per se resulted in lower phytoplankton to bacteria biomass ratios. Microzooplankton generally showed a strong feeding preference for phytoplankton over bacteria, but, in carbon-amended mesocosms which favored bacteria, microzooplankton shifted their diet towards bacteria. Furthermore, low total prey availability corresponded with low microzooplankton biomass and the highest bacteria/phytoplankton ratio. Overall our results suggest that in shallow coastal waters, modified with allochthonous matter from river discharge, light attenuation may be inconsequential for the basal producer balance, whereas increased allochthonous carbon, especially if readily bioavailable, favors bacteria over phytoplankton. We conclude that climate change induced shifts at the base of the food web may alter energy mobilization to and the biomass of microzooplankton grazers.
publishDate 2017
dc.date.none.fl_str_mv 2017-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/43011
Meunier, Cédric L.; Liess, Antonia; Andersson, Agneta; Brugel, Sonia; Paczkowska, Joanna Marianna; et al.; Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff; Elsevier; Marine Environmental Research; 129; 8-2017; 236-244
0141-1136
CONICET Digital
CONICET
url http://hdl.handle.net/11336/43011
identifier_str_mv Meunier, Cédric L.; Liess, Antonia; Andersson, Agneta; Brugel, Sonia; Paczkowska, Joanna Marianna; et al.; Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff; Elsevier; Marine Environmental Research; 129; 8-2017; 236-244
0141-1136
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.marenvres.2017.06.008
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S014111361730051X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614031979053056
score 13.070432