Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff
- Autores
- Meunier, Cédric L.; Liess, Antonia; Andersson, Agneta; Brugel, Sonia; Paczkowska, Joanna Marianna; Rahman, Habib; Skoglund, Bjorn; Rowe, Owen F.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Climate change predictions indicate that coastal and estuarine environments will receive increased terrestrial runoff via increased river discharge. This discharge transports allochthonous material, containing bioavailable nutrients and light attenuating matter. Since light and nutrients are important drivers of basal production, their relative and absolute availability have important consequences for the base of the aquatic food web, with potential ramifications for higher trophic levels. Here, we investigated the effects of shifts in terrestrial organic matter and light availability on basal producers and their grazers. In twelve Baltic Sea mesocosms, we simulated the effects of increased river runoff alone and in combination. We manipulated light (clear/shade) and carbon (added/not added) in a fully factorial design, with three replicates. We assessed microzooplankton grazing preferences in each treatment to assess whether increased terrestrial organic matter input would: (1) decrease the phytoplankton to bacterial biomass ratio, (2) shift microzooplankton diet from phytoplankton to bacteria, and (3) affect microzooplankton biomass. We found that carbon addition, but not reduced light levels per se resulted in lower phytoplankton to bacteria biomass ratios. Microzooplankton generally showed a strong feeding preference for phytoplankton over bacteria, but, in carbon-amended mesocosms which favored bacteria, microzooplankton shifted their diet towards bacteria. Furthermore, low total prey availability corresponded with low microzooplankton biomass and the highest bacteria/phytoplankton ratio. Overall our results suggest that in shallow coastal waters, modified with allochthonous matter from river discharge, light attenuation may be inconsequential for the basal producer balance, whereas increased allochthonous carbon, especially if readily bioavailable, favors bacteria over phytoplankton. We conclude that climate change induced shifts at the base of the food web may alter energy mobilization to and the biomass of microzooplankton grazers.
Fil: Meunier, Cédric L.. Universidad de Umea; Suecia
Fil: Liess, Antonia. Universidad de Umea; Suecia. Halmstad University; Suecia
Fil: Andersson, Agneta. Universidad de Umea; Suecia. Umea Marine Sciences Centre; Suecia
Fil: Brugel, Sonia. Universidad de Umea; Suecia. Umea Marine Sciences Centre; Suecia
Fil: Paczkowska, Joanna Marianna. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Umea; Suecia. Umea Marine Sciences Centre; Suecia
Fil: Rahman, Habib. Universidad de Umea; Suecia
Fil: Skoglund, Bjorn. Universidad de Umea; Suecia
Fil: Rowe, Owen F.. Universidad de Umea; Suecia. Umea Marine Sciences Centre; Suecia - Materia
-
Bacteria
Competition
Food Quality
Microzooplankton
Phytoplankton
Trophic Interactions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/43011
Ver los metadatos del registro completo
id |
CONICETDig_6a958f5d2b08824a9e3d646aa5b94b45 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/43011 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoffMeunier, Cédric L.Liess, AntoniaAndersson, AgnetaBrugel, SoniaPaczkowska, Joanna MariannaRahman, HabibSkoglund, BjornRowe, Owen F.BacteriaCompetitionFood QualityMicrozooplanktonPhytoplanktonTrophic Interactionshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Climate change predictions indicate that coastal and estuarine environments will receive increased terrestrial runoff via increased river discharge. This discharge transports allochthonous material, containing bioavailable nutrients and light attenuating matter. Since light and nutrients are important drivers of basal production, their relative and absolute availability have important consequences for the base of the aquatic food web, with potential ramifications for higher trophic levels. Here, we investigated the effects of shifts in terrestrial organic matter and light availability on basal producers and their grazers. In twelve Baltic Sea mesocosms, we simulated the effects of increased river runoff alone and in combination. We manipulated light (clear/shade) and carbon (added/not added) in a fully factorial design, with three replicates. We assessed microzooplankton grazing preferences in each treatment to assess whether increased terrestrial organic matter input would: (1) decrease the phytoplankton to bacterial biomass ratio, (2) shift microzooplankton diet from phytoplankton to bacteria, and (3) affect microzooplankton biomass. We found that carbon addition, but not reduced light levels per se resulted in lower phytoplankton to bacteria biomass ratios. Microzooplankton generally showed a strong feeding preference for phytoplankton over bacteria, but, in carbon-amended mesocosms which favored bacteria, microzooplankton shifted their diet towards bacteria. Furthermore, low total prey availability corresponded with low microzooplankton biomass and the highest bacteria/phytoplankton ratio. Overall our results suggest that in shallow coastal waters, modified with allochthonous matter from river discharge, light attenuation may be inconsequential for the basal producer balance, whereas increased allochthonous carbon, especially if readily bioavailable, favors bacteria over phytoplankton. We conclude that climate change induced shifts at the base of the food web may alter energy mobilization to and the biomass of microzooplankton grazers.Fil: Meunier, Cédric L.. Universidad de Umea; SueciaFil: Liess, Antonia. Universidad de Umea; Suecia. Halmstad University; SueciaFil: Andersson, Agneta. Universidad de Umea; Suecia. Umea Marine Sciences Centre; SueciaFil: Brugel, Sonia. Universidad de Umea; Suecia. Umea Marine Sciences Centre; SueciaFil: Paczkowska, Joanna Marianna. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Umea; Suecia. Umea Marine Sciences Centre; SueciaFil: Rahman, Habib. Universidad de Umea; SueciaFil: Skoglund, Bjorn. Universidad de Umea; SueciaFil: Rowe, Owen F.. Universidad de Umea; Suecia. Umea Marine Sciences Centre; SueciaElsevier2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/43011Meunier, Cédric L.; Liess, Antonia; Andersson, Agneta; Brugel, Sonia; Paczkowska, Joanna Marianna; et al.; Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff; Elsevier; Marine Environmental Research; 129; 8-2017; 236-2440141-1136CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.marenvres.2017.06.008info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S014111361730051Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:26Zoai:ri.conicet.gov.ar:11336/43011instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:26.492CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff |
title |
Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff |
spellingShingle |
Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff Meunier, Cédric L. Bacteria Competition Food Quality Microzooplankton Phytoplankton Trophic Interactions |
title_short |
Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff |
title_full |
Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff |
title_fullStr |
Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff |
title_full_unstemmed |
Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff |
title_sort |
Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff |
dc.creator.none.fl_str_mv |
Meunier, Cédric L. Liess, Antonia Andersson, Agneta Brugel, Sonia Paczkowska, Joanna Marianna Rahman, Habib Skoglund, Bjorn Rowe, Owen F. |
author |
Meunier, Cédric L. |
author_facet |
Meunier, Cédric L. Liess, Antonia Andersson, Agneta Brugel, Sonia Paczkowska, Joanna Marianna Rahman, Habib Skoglund, Bjorn Rowe, Owen F. |
author_role |
author |
author2 |
Liess, Antonia Andersson, Agneta Brugel, Sonia Paczkowska, Joanna Marianna Rahman, Habib Skoglund, Bjorn Rowe, Owen F. |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Bacteria Competition Food Quality Microzooplankton Phytoplankton Trophic Interactions |
topic |
Bacteria Competition Food Quality Microzooplankton Phytoplankton Trophic Interactions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Climate change predictions indicate that coastal and estuarine environments will receive increased terrestrial runoff via increased river discharge. This discharge transports allochthonous material, containing bioavailable nutrients and light attenuating matter. Since light and nutrients are important drivers of basal production, their relative and absolute availability have important consequences for the base of the aquatic food web, with potential ramifications for higher trophic levels. Here, we investigated the effects of shifts in terrestrial organic matter and light availability on basal producers and their grazers. In twelve Baltic Sea mesocosms, we simulated the effects of increased river runoff alone and in combination. We manipulated light (clear/shade) and carbon (added/not added) in a fully factorial design, with three replicates. We assessed microzooplankton grazing preferences in each treatment to assess whether increased terrestrial organic matter input would: (1) decrease the phytoplankton to bacterial biomass ratio, (2) shift microzooplankton diet from phytoplankton to bacteria, and (3) affect microzooplankton biomass. We found that carbon addition, but not reduced light levels per se resulted in lower phytoplankton to bacteria biomass ratios. Microzooplankton generally showed a strong feeding preference for phytoplankton over bacteria, but, in carbon-amended mesocosms which favored bacteria, microzooplankton shifted their diet towards bacteria. Furthermore, low total prey availability corresponded with low microzooplankton biomass and the highest bacteria/phytoplankton ratio. Overall our results suggest that in shallow coastal waters, modified with allochthonous matter from river discharge, light attenuation may be inconsequential for the basal producer balance, whereas increased allochthonous carbon, especially if readily bioavailable, favors bacteria over phytoplankton. We conclude that climate change induced shifts at the base of the food web may alter energy mobilization to and the biomass of microzooplankton grazers. Fil: Meunier, Cédric L.. Universidad de Umea; Suecia Fil: Liess, Antonia. Universidad de Umea; Suecia. Halmstad University; Suecia Fil: Andersson, Agneta. Universidad de Umea; Suecia. Umea Marine Sciences Centre; Suecia Fil: Brugel, Sonia. Universidad de Umea; Suecia. Umea Marine Sciences Centre; Suecia Fil: Paczkowska, Joanna Marianna. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Umea; Suecia. Umea Marine Sciences Centre; Suecia Fil: Rahman, Habib. Universidad de Umea; Suecia Fil: Skoglund, Bjorn. Universidad de Umea; Suecia Fil: Rowe, Owen F.. Universidad de Umea; Suecia. Umea Marine Sciences Centre; Suecia |
description |
Climate change predictions indicate that coastal and estuarine environments will receive increased terrestrial runoff via increased river discharge. This discharge transports allochthonous material, containing bioavailable nutrients and light attenuating matter. Since light and nutrients are important drivers of basal production, their relative and absolute availability have important consequences for the base of the aquatic food web, with potential ramifications for higher trophic levels. Here, we investigated the effects of shifts in terrestrial organic matter and light availability on basal producers and their grazers. In twelve Baltic Sea mesocosms, we simulated the effects of increased river runoff alone and in combination. We manipulated light (clear/shade) and carbon (added/not added) in a fully factorial design, with three replicates. We assessed microzooplankton grazing preferences in each treatment to assess whether increased terrestrial organic matter input would: (1) decrease the phytoplankton to bacterial biomass ratio, (2) shift microzooplankton diet from phytoplankton to bacteria, and (3) affect microzooplankton biomass. We found that carbon addition, but not reduced light levels per se resulted in lower phytoplankton to bacteria biomass ratios. Microzooplankton generally showed a strong feeding preference for phytoplankton over bacteria, but, in carbon-amended mesocosms which favored bacteria, microzooplankton shifted their diet towards bacteria. Furthermore, low total prey availability corresponded with low microzooplankton biomass and the highest bacteria/phytoplankton ratio. Overall our results suggest that in shallow coastal waters, modified with allochthonous matter from river discharge, light attenuation may be inconsequential for the basal producer balance, whereas increased allochthonous carbon, especially if readily bioavailable, favors bacteria over phytoplankton. We conclude that climate change induced shifts at the base of the food web may alter energy mobilization to and the biomass of microzooplankton grazers. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/43011 Meunier, Cédric L.; Liess, Antonia; Andersson, Agneta; Brugel, Sonia; Paczkowska, Joanna Marianna; et al.; Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff; Elsevier; Marine Environmental Research; 129; 8-2017; 236-244 0141-1136 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/43011 |
identifier_str_mv |
Meunier, Cédric L.; Liess, Antonia; Andersson, Agneta; Brugel, Sonia; Paczkowska, Joanna Marianna; et al.; Allochthonous carbon is a major driver of the microbial food web – A mesocosm study simulating elevated terrestrial matter runoff; Elsevier; Marine Environmental Research; 129; 8-2017; 236-244 0141-1136 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.marenvres.2017.06.008 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S014111361730051X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614031979053056 |
score |
13.070432 |