Algebraicity of Hodge Loci for Variations of Hodge Structure
- Autores
- Cattani, Eduardo; Kaplan, Aroldo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- These notes should be seen as a companion to [8], where thealgebraicity of the loci of Hodge classes is proven without appealing to theHodge conjecture. We give explicit detailed proofs in the case of variationsof Hodge structures over curves and surfaces which, we hope, help clarify thearguments in [8], as well as some generalizations, consequences and conjecturesbased on those results.
Fil: Cattani, Eduardo. University of Massachusetts at Amherst. Amherst; Estados Unidos
Fil: Kaplan, Aroldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Hodge
Algebraicity
Cycles
Locus - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32138
Ver los metadatos del registro completo
id |
CONICETDig_6a1e30e26b3769fba20919d44a924c53 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32138 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Algebraicity of Hodge Loci for Variations of Hodge StructureCattani, EduardoKaplan, AroldoHodgeAlgebraicityCyclesLocushttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1These notes should be seen as a companion to [8], where thealgebraicity of the loci of Hodge classes is proven without appealing to theHodge conjecture. We give explicit detailed proofs in the case of variationsof Hodge structures over curves and surfaces which, we hope, help clarify thearguments in [8], as well as some generalizations, consequences and conjecturesbased on those results.Fil: Cattani, Eduardo. University of Massachusetts at Amherst. Amherst; Estados UnidosFil: Kaplan, Aroldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaAmerican Mathematical Society2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32138Cattani, Eduardo; Kaplan, Aroldo; Algebraicity of Hodge Loci for Variations of Hodge Structure; American Mathematical Society; Contemporary Mathematics; 608; 10-20140271-4132CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://people.math.umass.edu/~cattani/hodgeloci_tcu.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:26Zoai:ri.conicet.gov.ar:11336/32138instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:27.268CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Algebraicity of Hodge Loci for Variations of Hodge Structure |
title |
Algebraicity of Hodge Loci for Variations of Hodge Structure |
spellingShingle |
Algebraicity of Hodge Loci for Variations of Hodge Structure Cattani, Eduardo Hodge Algebraicity Cycles Locus |
title_short |
Algebraicity of Hodge Loci for Variations of Hodge Structure |
title_full |
Algebraicity of Hodge Loci for Variations of Hodge Structure |
title_fullStr |
Algebraicity of Hodge Loci for Variations of Hodge Structure |
title_full_unstemmed |
Algebraicity of Hodge Loci for Variations of Hodge Structure |
title_sort |
Algebraicity of Hodge Loci for Variations of Hodge Structure |
dc.creator.none.fl_str_mv |
Cattani, Eduardo Kaplan, Aroldo |
author |
Cattani, Eduardo |
author_facet |
Cattani, Eduardo Kaplan, Aroldo |
author_role |
author |
author2 |
Kaplan, Aroldo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Hodge Algebraicity Cycles Locus |
topic |
Hodge Algebraicity Cycles Locus |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
These notes should be seen as a companion to [8], where thealgebraicity of the loci of Hodge classes is proven without appealing to theHodge conjecture. We give explicit detailed proofs in the case of variationsof Hodge structures over curves and surfaces which, we hope, help clarify thearguments in [8], as well as some generalizations, consequences and conjecturesbased on those results. Fil: Cattani, Eduardo. University of Massachusetts at Amherst. Amherst; Estados Unidos Fil: Kaplan, Aroldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
These notes should be seen as a companion to [8], where thealgebraicity of the loci of Hodge classes is proven without appealing to theHodge conjecture. We give explicit detailed proofs in the case of variationsof Hodge structures over curves and surfaces which, we hope, help clarify thearguments in [8], as well as some generalizations, consequences and conjecturesbased on those results. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32138 Cattani, Eduardo; Kaplan, Aroldo; Algebraicity of Hodge Loci for Variations of Hodge Structure; American Mathematical Society; Contemporary Mathematics; 608; 10-2014 0271-4132 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/32138 |
identifier_str_mv |
Cattani, Eduardo; Kaplan, Aroldo; Algebraicity of Hodge Loci for Variations of Hodge Structure; American Mathematical Society; Contemporary Mathematics; 608; 10-2014 0271-4132 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://people.math.umass.edu/~cattani/hodgeloci_tcu.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268603084177408 |
score |
13.13397 |