Ethanol catalytic membrane reformer for direct PEM FC feeding

Autores
Koch, Reinhold; Lopez, Eduardo; Divins, Núria J.; Allué, Miguel; Jossen, Andreas; Riera, Jordi; Llorca, Jordi
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper an ethanol reformer based on catalytic steam reforming with a catalytic honeycomb loaded with RhPd/CeO2 and palladium separation membranes with an area of 30.4 cm2 has been used to generate a pure hydrogen stream of up to 100 ml/min to feed a PEM fuel cell with an active area of 5 cm2. The fuel reformer behavior has been extensively studied under different temperature, ethanolewater flow rate and gas pressure at a fixed S/C ratio of 1.6 (molar). The hydrogen yield has been controlled by acting upon the ethanol-water fuel flow and gas pressure. A mathematical model of the ethanol reformer has been developed and an adaptive and predictive control has been implemented on a real time system to take account of its nonlinear behavior. With this control the response time of the reformer can be reduced by a factor of 7 down to 8 s. The improved dynamics of the controlled reformer match better the quickly changing hydrogen demands of fuel cells. They reached a magnitude where costly hydrogen buffers between the reformer and the fuel cell can be omitted and an electric buffer at the output of the fuel cell is sufficient.
Fil: Koch, Reinhold. Universitat Technical Zu Munich;
Fil: Lopez, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahia Blanca. Planta Piloto de Ingenieria Quimica (i); Argentina;
Fil: Divins, Núria J.. Institut de Têcniques Energetiques, Universitat Politecnica de Catalunya, España;
Fil: Allué, Miguel. Institut de Robótica i Informática Industrial; España;
Fil: Jossen, Andreas. Institute for Electrical Energy Storage Technology. Technische Universitat Munchen; Alemania;
Fil: Riera, Jordi. Institut de Robótica i Informática Industrial; España;
Fil: Llorca, Jordi. Institut de Têcniques Energetiques, Universitat Politecnica de Catalunya, España;
Materia
Ethanol steam reforming
Metal membrane
PEM fuel cell
Sensitivity analysis
Dynamic modeling
Reformer control
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/1086

id CONICETDig_69e1e609c74a4d4101b0645d9a6c1521
oai_identifier_str oai:ri.conicet.gov.ar:11336/1086
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ethanol catalytic membrane reformer for direct PEM FC feedingKoch, ReinholdLopez, EduardoDivins, Núria J.Allué, MiguelJossen, AndreasRiera, JordiLlorca, JordiEthanol steam reformingMetal membranePEM fuel cellSensitivity analysisDynamic modelingReformer controlhttps://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.4In this paper an ethanol reformer based on catalytic steam reforming with a catalytic honeycomb loaded with RhPd/CeO2 and palladium separation membranes with an area of 30.4 cm2 has been used to generate a pure hydrogen stream of up to 100 ml/min to feed a PEM fuel cell with an active area of 5 cm2. The fuel reformer behavior has been extensively studied under different temperature, ethanolewater flow rate and gas pressure at a fixed S/C ratio of 1.6 (molar). The hydrogen yield has been controlled by acting upon the ethanol-water fuel flow and gas pressure. A mathematical model of the ethanol reformer has been developed and an adaptive and predictive control has been implemented on a real time system to take account of its nonlinear behavior. With this control the response time of the reformer can be reduced by a factor of 7 down to 8 s. The improved dynamics of the controlled reformer match better the quickly changing hydrogen demands of fuel cells. They reached a magnitude where costly hydrogen buffers between the reformer and the fuel cell can be omitted and an electric buffer at the output of the fuel cell is sufficient.Fil: Koch, Reinhold. Universitat Technical Zu Munich;Fil: Lopez, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahia Blanca. Planta Piloto de Ingenieria Quimica (i); Argentina;Fil: Divins, Núria J.. Institut de Têcniques Energetiques, Universitat Politecnica de Catalunya, España;Fil: Allué, Miguel. Institut de Robótica i Informática Industrial; España;Fil: Jossen, Andreas. Institute for Electrical Energy Storage Technology. Technische Universitat Munchen; Alemania;Fil: Riera, Jordi. Institut de Robótica i Informática Industrial; España;Fil: Llorca, Jordi. Institut de Têcniques Energetiques, Universitat Politecnica de Catalunya, España;Pergamon-elsevier Science Ltd2013-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/1086Koch, Reinhold; Lopez, Eduardo; Divins, Núria J.; Allué, Miguel; Jossen, Andreas; et al.; Ethanol catalytic membrane reformer for direct PEM FC feeding; Pergamon-elsevier Science Ltd; International Journal Of Hydrogen Energy; 38; 14; 2-2013; 5605-56150360-3199enginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:04:42Zoai:ri.conicet.gov.ar:11336/1086instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:04:43.086CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ethanol catalytic membrane reformer for direct PEM FC feeding
title Ethanol catalytic membrane reformer for direct PEM FC feeding
spellingShingle Ethanol catalytic membrane reformer for direct PEM FC feeding
Koch, Reinhold
Ethanol steam reforming
Metal membrane
PEM fuel cell
Sensitivity analysis
Dynamic modeling
Reformer control
title_short Ethanol catalytic membrane reformer for direct PEM FC feeding
title_full Ethanol catalytic membrane reformer for direct PEM FC feeding
title_fullStr Ethanol catalytic membrane reformer for direct PEM FC feeding
title_full_unstemmed Ethanol catalytic membrane reformer for direct PEM FC feeding
title_sort Ethanol catalytic membrane reformer for direct PEM FC feeding
dc.creator.none.fl_str_mv Koch, Reinhold
Lopez, Eduardo
Divins, Núria J.
Allué, Miguel
Jossen, Andreas
Riera, Jordi
Llorca, Jordi
author Koch, Reinhold
author_facet Koch, Reinhold
Lopez, Eduardo
Divins, Núria J.
Allué, Miguel
Jossen, Andreas
Riera, Jordi
Llorca, Jordi
author_role author
author2 Lopez, Eduardo
Divins, Núria J.
Allué, Miguel
Jossen, Andreas
Riera, Jordi
Llorca, Jordi
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Ethanol steam reforming
Metal membrane
PEM fuel cell
Sensitivity analysis
Dynamic modeling
Reformer control
topic Ethanol steam reforming
Metal membrane
PEM fuel cell
Sensitivity analysis
Dynamic modeling
Reformer control
purl_subject.fl_str_mv https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/2.4
dc.description.none.fl_txt_mv In this paper an ethanol reformer based on catalytic steam reforming with a catalytic honeycomb loaded with RhPd/CeO2 and palladium separation membranes with an area of 30.4 cm2 has been used to generate a pure hydrogen stream of up to 100 ml/min to feed a PEM fuel cell with an active area of 5 cm2. The fuel reformer behavior has been extensively studied under different temperature, ethanolewater flow rate and gas pressure at a fixed S/C ratio of 1.6 (molar). The hydrogen yield has been controlled by acting upon the ethanol-water fuel flow and gas pressure. A mathematical model of the ethanol reformer has been developed and an adaptive and predictive control has been implemented on a real time system to take account of its nonlinear behavior. With this control the response time of the reformer can be reduced by a factor of 7 down to 8 s. The improved dynamics of the controlled reformer match better the quickly changing hydrogen demands of fuel cells. They reached a magnitude where costly hydrogen buffers between the reformer and the fuel cell can be omitted and an electric buffer at the output of the fuel cell is sufficient.
Fil: Koch, Reinhold. Universitat Technical Zu Munich;
Fil: Lopez, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahia Blanca. Planta Piloto de Ingenieria Quimica (i); Argentina;
Fil: Divins, Núria J.. Institut de Têcniques Energetiques, Universitat Politecnica de Catalunya, España;
Fil: Allué, Miguel. Institut de Robótica i Informática Industrial; España;
Fil: Jossen, Andreas. Institute for Electrical Energy Storage Technology. Technische Universitat Munchen; Alemania;
Fil: Riera, Jordi. Institut de Robótica i Informática Industrial; España;
Fil: Llorca, Jordi. Institut de Têcniques Energetiques, Universitat Politecnica de Catalunya, España;
description In this paper an ethanol reformer based on catalytic steam reforming with a catalytic honeycomb loaded with RhPd/CeO2 and palladium separation membranes with an area of 30.4 cm2 has been used to generate a pure hydrogen stream of up to 100 ml/min to feed a PEM fuel cell with an active area of 5 cm2. The fuel reformer behavior has been extensively studied under different temperature, ethanolewater flow rate and gas pressure at a fixed S/C ratio of 1.6 (molar). The hydrogen yield has been controlled by acting upon the ethanol-water fuel flow and gas pressure. A mathematical model of the ethanol reformer has been developed and an adaptive and predictive control has been implemented on a real time system to take account of its nonlinear behavior. With this control the response time of the reformer can be reduced by a factor of 7 down to 8 s. The improved dynamics of the controlled reformer match better the quickly changing hydrogen demands of fuel cells. They reached a magnitude where costly hydrogen buffers between the reformer and the fuel cell can be omitted and an electric buffer at the output of the fuel cell is sufficient.
publishDate 2013
dc.date.none.fl_str_mv 2013-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/1086
Koch, Reinhold; Lopez, Eduardo; Divins, Núria J.; Allué, Miguel; Jossen, Andreas; et al.; Ethanol catalytic membrane reformer for direct PEM FC feeding; Pergamon-elsevier Science Ltd; International Journal Of Hydrogen Energy; 38; 14; 2-2013; 5605-5615
0360-3199
url http://hdl.handle.net/11336/1086
identifier_str_mv Koch, Reinhold; Lopez, Eduardo; Divins, Núria J.; Allué, Miguel; Jossen, Andreas; et al.; Ethanol catalytic membrane reformer for direct PEM FC feeding; Pergamon-elsevier Science Ltd; International Journal Of Hydrogen Energy; 38; 14; 2-2013; 5605-5615
0360-3199
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083190042656768
score 13.22299