A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordings
- Autores
- Peterson, Victoria; Vissani, Matteo; Luo, Shiyu; Rabbani, Qinwan; Crone, Nathan E.; Bush, Alan; Richardson, R. Mark
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Neurosurgical procedures that enable direct brain recordings in awake patients offer unique opportunities to explore the neurophysiology of human speech. The scarcity of these opportunities and the altruism of participating patients compel us to apply the highest rigor to signal analysis. Intracranial electroencephalography (iEEG) signals recorded during overt speech can contain a speech artifact that tracks the fundamental frequency (F0) of the participant’s voice, involving the same high-gamma frequencies that are modulated during speech production and perception. To address this artifact, we developed a spatial-filtering approach to identify and remove acoustic-induced contaminations of the recorded signal. We found that traditional reference schemes jeopardized signal quality, whereas our data-driven method denoised the recordings while preserving underlying neural activity.
Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Harvard Medical School; Estados Unidos
Fil: Vissani, Matteo. Harvard Medical School; Estados Unidos
Fil: Luo, Shiyu. Johns Hopkins University School of Medicine; Estados Unidos
Fil: Rabbani, Qinwan. University Johns Hopkins; Estados Unidos
Fil: Crone, Nathan E.. Johns Hopkins University School of Medicine; Estados Unidos
Fil: Bush, Alan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Harvard Medical School; Estados Unidos
Fil: Richardson, R. Mark. Harvard Medical School; Estados Unidos. Massachusetts Institute of Technology; Estados Unidos - Materia
-
SPEECH PRODUCTION
SPEECH ARTIFACT
iEEG
SPATIAL FILTERING
PHASE-COUPLING OPTIMIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/258329
Ver los metadatos del registro completo
id |
CONICETDig_68eef62750588a2b18d20ab8d30eec48 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/258329 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordingsPeterson, VictoriaVissani, MatteoLuo, ShiyuRabbani, QinwanCrone, Nathan E.Bush, AlanRichardson, R. MarkSPEECH PRODUCTIONSPEECH ARTIFACTiEEGSPATIAL FILTERINGPHASE-COUPLING OPTIMIZATIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.6https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1Neurosurgical procedures that enable direct brain recordings in awake patients offer unique opportunities to explore the neurophysiology of human speech. The scarcity of these opportunities and the altruism of participating patients compel us to apply the highest rigor to signal analysis. Intracranial electroencephalography (iEEG) signals recorded during overt speech can contain a speech artifact that tracks the fundamental frequency (F0) of the participant’s voice, involving the same high-gamma frequencies that are modulated during speech production and perception. To address this artifact, we developed a spatial-filtering approach to identify and remove acoustic-induced contaminations of the recorded signal. We found that traditional reference schemes jeopardized signal quality, whereas our data-driven method denoised the recordings while preserving underlying neural activity.Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Harvard Medical School; Estados UnidosFil: Vissani, Matteo. Harvard Medical School; Estados UnidosFil: Luo, Shiyu. Johns Hopkins University School of Medicine; Estados UnidosFil: Rabbani, Qinwan. University Johns Hopkins; Estados UnidosFil: Crone, Nathan E.. Johns Hopkins University School of Medicine; Estados UnidosFil: Bush, Alan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Harvard Medical School; Estados UnidosFil: Richardson, R. Mark. Harvard Medical School; Estados Unidos. Massachusetts Institute of Technology; Estados UnidosMassachusetts Institute of Technology2024-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/258329Peterson, Victoria; Vissani, Matteo; Luo, Shiyu; Rabbani, Qinwan; Crone, Nathan E.; et al.; A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordings; Massachusetts Institute of Technology; Imaging Neuroscience; 2; 10-2024; 1-222837-6056CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://direct.mit.edu/imag/article/doi/10.1162/imag_a_00301/124344/A-supervised-data-driven-spatial-filter-denoisinginfo:eu-repo/semantics/altIdentifier/doi/10.1162/imag_a_00301info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:01:02Zoai:ri.conicet.gov.ar:11336/258329instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:01:03.007CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordings |
title |
A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordings |
spellingShingle |
A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordings Peterson, Victoria SPEECH PRODUCTION SPEECH ARTIFACT iEEG SPATIAL FILTERING PHASE-COUPLING OPTIMIZATION |
title_short |
A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordings |
title_full |
A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordings |
title_fullStr |
A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordings |
title_full_unstemmed |
A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordings |
title_sort |
A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordings |
dc.creator.none.fl_str_mv |
Peterson, Victoria Vissani, Matteo Luo, Shiyu Rabbani, Qinwan Crone, Nathan E. Bush, Alan Richardson, R. Mark |
author |
Peterson, Victoria |
author_facet |
Peterson, Victoria Vissani, Matteo Luo, Shiyu Rabbani, Qinwan Crone, Nathan E. Bush, Alan Richardson, R. Mark |
author_role |
author |
author2 |
Vissani, Matteo Luo, Shiyu Rabbani, Qinwan Crone, Nathan E. Bush, Alan Richardson, R. Mark |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
SPEECH PRODUCTION SPEECH ARTIFACT iEEG SPATIAL FILTERING PHASE-COUPLING OPTIMIZATION |
topic |
SPEECH PRODUCTION SPEECH ARTIFACT iEEG SPATIAL FILTERING PHASE-COUPLING OPTIMIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/2.6 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.7 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Neurosurgical procedures that enable direct brain recordings in awake patients offer unique opportunities to explore the neurophysiology of human speech. The scarcity of these opportunities and the altruism of participating patients compel us to apply the highest rigor to signal analysis. Intracranial electroencephalography (iEEG) signals recorded during overt speech can contain a speech artifact that tracks the fundamental frequency (F0) of the participant’s voice, involving the same high-gamma frequencies that are modulated during speech production and perception. To address this artifact, we developed a spatial-filtering approach to identify and remove acoustic-induced contaminations of the recorded signal. We found that traditional reference schemes jeopardized signal quality, whereas our data-driven method denoised the recordings while preserving underlying neural activity. Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Harvard Medical School; Estados Unidos Fil: Vissani, Matteo. Harvard Medical School; Estados Unidos Fil: Luo, Shiyu. Johns Hopkins University School of Medicine; Estados Unidos Fil: Rabbani, Qinwan. University Johns Hopkins; Estados Unidos Fil: Crone, Nathan E.. Johns Hopkins University School of Medicine; Estados Unidos Fil: Bush, Alan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Harvard Medical School; Estados Unidos Fil: Richardson, R. Mark. Harvard Medical School; Estados Unidos. Massachusetts Institute of Technology; Estados Unidos |
description |
Neurosurgical procedures that enable direct brain recordings in awake patients offer unique opportunities to explore the neurophysiology of human speech. The scarcity of these opportunities and the altruism of participating patients compel us to apply the highest rigor to signal analysis. Intracranial electroencephalography (iEEG) signals recorded during overt speech can contain a speech artifact that tracks the fundamental frequency (F0) of the participant’s voice, involving the same high-gamma frequencies that are modulated during speech production and perception. To address this artifact, we developed a spatial-filtering approach to identify and remove acoustic-induced contaminations of the recorded signal. We found that traditional reference schemes jeopardized signal quality, whereas our data-driven method denoised the recordings while preserving underlying neural activity. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/258329 Peterson, Victoria; Vissani, Matteo; Luo, Shiyu; Rabbani, Qinwan; Crone, Nathan E.; et al.; A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordings; Massachusetts Institute of Technology; Imaging Neuroscience; 2; 10-2024; 1-22 2837-6056 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/258329 |
identifier_str_mv |
Peterson, Victoria; Vissani, Matteo; Luo, Shiyu; Rabbani, Qinwan; Crone, Nathan E.; et al.; A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordings; Massachusetts Institute of Technology; Imaging Neuroscience; 2; 10-2024; 1-22 2837-6056 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://direct.mit.edu/imag/article/doi/10.1162/imag_a_00301/124344/A-supervised-data-driven-spatial-filter-denoising info:eu-repo/semantics/altIdentifier/doi/10.1162/imag_a_00301 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Massachusetts Institute of Technology |
publisher.none.fl_str_mv |
Massachusetts Institute of Technology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842979922252922880 |
score |
12.48226 |