What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna

Autores
Lorente, Malena
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The arrangement of the tarsus has been used to differentiate afrotherian and laurasiatherian ungulates for more than a century, and it is often present in morphological matrices that include appendicular features. Traditionally, it has two states: (i) an alternating tarsus, where proximal elements are interlocked with central and distal elements positioned like the bricks of a wall; and (ii) a serial tarsus, where elements are not interlocked. Over the years, these states became synonymous with the presence or absence of an astragalocuboid contact. Within the South American order Notoungulata, a third disposition was recognized: the reversed alternating tarsus, associated with a calcaneonavicular contact. This state was considered to be a synapomorphy of ‘advanced’ Toxodontia families (Notohippidae, Leontiniidae and Toxodontidae), but a further inspection of its distribution shows that it occurs throughout Mammalia. Additionally, it overlaps the serial tarsus condition as originally defined, and it probably has no functional or phylogenetic significance. Calcaneonavicular and astragalocuboid contacts are non-exclusive, and their presence within a species, genus or family is not constant. Serial and alternating imply movements of the articulations of the mid-tarsus in the transverse axis, while reverse alternating refers to a small calcaneonavicular contact that sometimes occurs in a serial condition or to a significant displacement of the tarsal articulations in a different (proximodistal) axis. The proximodistal arrangement of the joints could be functionally significant. Two new states are observed and defined: (i) ‘flipped serial’, present in Macropodidae, in which the calcaneocuboid articulation is medially displaced and significantly larger than the astragalonavicular contact, but the relationships between proximal and central elements are one to one; and (ii) ‘distal cuboid’, an extreme proximodistal displacement of the astragalonavicular joint. Serial and alternating, as originally defined (i.e. without any reference to which bone contacts which), seem to be the best states for classifying tarsal arrangement though as the disposition of distal or central bones in relationship to proximal bones.
Fil: Lorente, Malena. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Materia
MAMMALIA
MERIDIUNGULATA
MORPHOLOGY
PHYLOGENY
TARSUS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/128066

id CONICETDig_685cf2c80496a818460a0d70dd17ec06
oai_identifier_str oai:ri.conicet.gov.ar:11336/128066
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and LitopternaLorente, MalenaMAMMALIAMERIDIUNGULATAMORPHOLOGYPHYLOGENYTARSUShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The arrangement of the tarsus has been used to differentiate afrotherian and laurasiatherian ungulates for more than a century, and it is often present in morphological matrices that include appendicular features. Traditionally, it has two states: (i) an alternating tarsus, where proximal elements are interlocked with central and distal elements positioned like the bricks of a wall; and (ii) a serial tarsus, where elements are not interlocked. Over the years, these states became synonymous with the presence or absence of an astragalocuboid contact. Within the South American order Notoungulata, a third disposition was recognized: the reversed alternating tarsus, associated with a calcaneonavicular contact. This state was considered to be a synapomorphy of ‘advanced’ Toxodontia families (Notohippidae, Leontiniidae and Toxodontidae), but a further inspection of its distribution shows that it occurs throughout Mammalia. Additionally, it overlaps the serial tarsus condition as originally defined, and it probably has no functional or phylogenetic significance. Calcaneonavicular and astragalocuboid contacts are non-exclusive, and their presence within a species, genus or family is not constant. Serial and alternating imply movements of the articulations of the mid-tarsus in the transverse axis, while reverse alternating refers to a small calcaneonavicular contact that sometimes occurs in a serial condition or to a significant displacement of the tarsal articulations in a different (proximodistal) axis. The proximodistal arrangement of the joints could be functionally significant. Two new states are observed and defined: (i) ‘flipped serial’, present in Macropodidae, in which the calcaneocuboid articulation is medially displaced and significantly larger than the astragalonavicular contact, but the relationships between proximal and central elements are one to one; and (ii) ‘distal cuboid’, an extreme proximodistal displacement of the astragalonavicular joint. Serial and alternating, as originally defined (i.e. without any reference to which bone contacts which), seem to be the best states for classifying tarsal arrangement though as the disposition of distal or central bones in relationship to proximal bones.Fil: Lorente, Malena. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaWiley Blackwell Publishing, Inc2019-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/128066Lorente, Malena; What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna; Wiley Blackwell Publishing, Inc; Journal of Anatomy; 235; 6; 12-2019; 1024-10350021-8782CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/joa.13065info:eu-repo/semantics/altIdentifier/doi/10.1111/joa.13065info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-01-08T12:51:10Zoai:ri.conicet.gov.ar:11336/128066instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-01-08 12:51:10.374CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna
title What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna
spellingShingle What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna
Lorente, Malena
MAMMALIA
MERIDIUNGULATA
MORPHOLOGY
PHYLOGENY
TARSUS
title_short What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna
title_full What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna
title_fullStr What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna
title_full_unstemmed What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna
title_sort What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna
dc.creator.none.fl_str_mv Lorente, Malena
author Lorente, Malena
author_facet Lorente, Malena
author_role author
dc.subject.none.fl_str_mv MAMMALIA
MERIDIUNGULATA
MORPHOLOGY
PHYLOGENY
TARSUS
topic MAMMALIA
MERIDIUNGULATA
MORPHOLOGY
PHYLOGENY
TARSUS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The arrangement of the tarsus has been used to differentiate afrotherian and laurasiatherian ungulates for more than a century, and it is often present in morphological matrices that include appendicular features. Traditionally, it has two states: (i) an alternating tarsus, where proximal elements are interlocked with central and distal elements positioned like the bricks of a wall; and (ii) a serial tarsus, where elements are not interlocked. Over the years, these states became synonymous with the presence or absence of an astragalocuboid contact. Within the South American order Notoungulata, a third disposition was recognized: the reversed alternating tarsus, associated with a calcaneonavicular contact. This state was considered to be a synapomorphy of ‘advanced’ Toxodontia families (Notohippidae, Leontiniidae and Toxodontidae), but a further inspection of its distribution shows that it occurs throughout Mammalia. Additionally, it overlaps the serial tarsus condition as originally defined, and it probably has no functional or phylogenetic significance. Calcaneonavicular and astragalocuboid contacts are non-exclusive, and their presence within a species, genus or family is not constant. Serial and alternating imply movements of the articulations of the mid-tarsus in the transverse axis, while reverse alternating refers to a small calcaneonavicular contact that sometimes occurs in a serial condition or to a significant displacement of the tarsal articulations in a different (proximodistal) axis. The proximodistal arrangement of the joints could be functionally significant. Two new states are observed and defined: (i) ‘flipped serial’, present in Macropodidae, in which the calcaneocuboid articulation is medially displaced and significantly larger than the astragalonavicular contact, but the relationships between proximal and central elements are one to one; and (ii) ‘distal cuboid’, an extreme proximodistal displacement of the astragalonavicular joint. Serial and alternating, as originally defined (i.e. without any reference to which bone contacts which), seem to be the best states for classifying tarsal arrangement though as the disposition of distal or central bones in relationship to proximal bones.
Fil: Lorente, Malena. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
description The arrangement of the tarsus has been used to differentiate afrotherian and laurasiatherian ungulates for more than a century, and it is often present in morphological matrices that include appendicular features. Traditionally, it has two states: (i) an alternating tarsus, where proximal elements are interlocked with central and distal elements positioned like the bricks of a wall; and (ii) a serial tarsus, where elements are not interlocked. Over the years, these states became synonymous with the presence or absence of an astragalocuboid contact. Within the South American order Notoungulata, a third disposition was recognized: the reversed alternating tarsus, associated with a calcaneonavicular contact. This state was considered to be a synapomorphy of ‘advanced’ Toxodontia families (Notohippidae, Leontiniidae and Toxodontidae), but a further inspection of its distribution shows that it occurs throughout Mammalia. Additionally, it overlaps the serial tarsus condition as originally defined, and it probably has no functional or phylogenetic significance. Calcaneonavicular and astragalocuboid contacts are non-exclusive, and their presence within a species, genus or family is not constant. Serial and alternating imply movements of the articulations of the mid-tarsus in the transverse axis, while reverse alternating refers to a small calcaneonavicular contact that sometimes occurs in a serial condition or to a significant displacement of the tarsal articulations in a different (proximodistal) axis. The proximodistal arrangement of the joints could be functionally significant. Two new states are observed and defined: (i) ‘flipped serial’, present in Macropodidae, in which the calcaneocuboid articulation is medially displaced and significantly larger than the astragalonavicular contact, but the relationships between proximal and central elements are one to one; and (ii) ‘distal cuboid’, an extreme proximodistal displacement of the astragalonavicular joint. Serial and alternating, as originally defined (i.e. without any reference to which bone contacts which), seem to be the best states for classifying tarsal arrangement though as the disposition of distal or central bones in relationship to proximal bones.
publishDate 2019
dc.date.none.fl_str_mv 2019-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/128066
Lorente, Malena; What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna; Wiley Blackwell Publishing, Inc; Journal of Anatomy; 235; 6; 12-2019; 1024-1035
0021-8782
CONICET Digital
CONICET
url http://hdl.handle.net/11336/128066
identifier_str_mv Lorente, Malena; What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna; Wiley Blackwell Publishing, Inc; Journal of Anatomy; 235; 6; 12-2019; 1024-1035
0021-8782
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/joa.13065
info:eu-repo/semantics/altIdentifier/doi/10.1111/joa.13065
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1853775197767729152
score 13.25844