What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna
- Autores
- Lorente, Malena
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The arrangement of the tarsus has been used to differentiate afrotherian and laurasiatherian ungulates for more than a century, and it is often present in morphological matrices that include appendicular features. Traditionally, it has two states: (i) an alternating tarsus, where proximal elements are interlocked with central and distal elements positioned like the bricks of a wall; and (ii) a serial tarsus, where elements are not interlocked. Over the years, these states became synonymous with the presence or absence of an astragalocuboid contact. Within the South American order Notoungulata, a third disposition was recognized: the reversed alternating tarsus, associated with a calcaneonavicular contact. This state was considered to be a synapomorphy of ‘advanced’ Toxodontia families (Notohippidae, Leontiniidae and Toxodontidae), but a further inspection of its distribution shows that it occurs throughout Mammalia. Additionally, it overlaps the serial tarsus condition as originally defined, and it probably has no functional or phylogenetic significance. Calcaneonavicular and astragalocuboid contacts are non-exclusive, and their presence within a species, genus or family is not constant. Serial and alternating imply movements of the articulations of the mid-tarsus in the transverse axis, while reverse alternating refers to a small calcaneonavicular contact that sometimes occurs in a serial condition or to a significant displacement of the tarsal articulations in a different (proximodistal) axis. The proximodistal arrangement of the joints could be functionally significant. Two new states are observed and defined: (i) ‘flipped serial’, present in Macropodidae, in which the calcaneocuboid articulation is medially displaced and significantly larger than the astragalonavicular contact, but the relationships between proximal and central elements are one to one; and (ii) ‘distal cuboid’, an extreme proximodistal displacement of the astragalonavicular joint. Serial and alternating, as originally defined (i.e. without any reference to which bone contacts which), seem to be the best states for classifying tarsal arrangement though as the disposition of distal or central bones in relationship to proximal bones.
Fil: Lorente, Malena. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina - Materia
-
MAMMALIA
MERIDIUNGULATA
MORPHOLOGY
PHYLOGENY
TARSUS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/128066
Ver los metadatos del registro completo
| id |
CONICETDig_685cf2c80496a818460a0d70dd17ec06 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/128066 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and LitopternaLorente, MalenaMAMMALIAMERIDIUNGULATAMORPHOLOGYPHYLOGENYTARSUShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The arrangement of the tarsus has been used to differentiate afrotherian and laurasiatherian ungulates for more than a century, and it is often present in morphological matrices that include appendicular features. Traditionally, it has two states: (i) an alternating tarsus, where proximal elements are interlocked with central and distal elements positioned like the bricks of a wall; and (ii) a serial tarsus, where elements are not interlocked. Over the years, these states became synonymous with the presence or absence of an astragalocuboid contact. Within the South American order Notoungulata, a third disposition was recognized: the reversed alternating tarsus, associated with a calcaneonavicular contact. This state was considered to be a synapomorphy of ‘advanced’ Toxodontia families (Notohippidae, Leontiniidae and Toxodontidae), but a further inspection of its distribution shows that it occurs throughout Mammalia. Additionally, it overlaps the serial tarsus condition as originally defined, and it probably has no functional or phylogenetic significance. Calcaneonavicular and astragalocuboid contacts are non-exclusive, and their presence within a species, genus or family is not constant. Serial and alternating imply movements of the articulations of the mid-tarsus in the transverse axis, while reverse alternating refers to a small calcaneonavicular contact that sometimes occurs in a serial condition or to a significant displacement of the tarsal articulations in a different (proximodistal) axis. The proximodistal arrangement of the joints could be functionally significant. Two new states are observed and defined: (i) ‘flipped serial’, present in Macropodidae, in which the calcaneocuboid articulation is medially displaced and significantly larger than the astragalonavicular contact, but the relationships between proximal and central elements are one to one; and (ii) ‘distal cuboid’, an extreme proximodistal displacement of the astragalonavicular joint. Serial and alternating, as originally defined (i.e. without any reference to which bone contacts which), seem to be the best states for classifying tarsal arrangement though as the disposition of distal or central bones in relationship to proximal bones.Fil: Lorente, Malena. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaWiley Blackwell Publishing, Inc2019-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/128066Lorente, Malena; What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna; Wiley Blackwell Publishing, Inc; Journal of Anatomy; 235; 6; 12-2019; 1024-10350021-8782CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/joa.13065info:eu-repo/semantics/altIdentifier/doi/10.1111/joa.13065info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-01-08T12:51:10Zoai:ri.conicet.gov.ar:11336/128066instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-01-08 12:51:10.374CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna |
| title |
What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna |
| spellingShingle |
What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna Lorente, Malena MAMMALIA MERIDIUNGULATA MORPHOLOGY PHYLOGENY TARSUS |
| title_short |
What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna |
| title_full |
What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna |
| title_fullStr |
What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna |
| title_full_unstemmed |
What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna |
| title_sort |
What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna |
| dc.creator.none.fl_str_mv |
Lorente, Malena |
| author |
Lorente, Malena |
| author_facet |
Lorente, Malena |
| author_role |
author |
| dc.subject.none.fl_str_mv |
MAMMALIA MERIDIUNGULATA MORPHOLOGY PHYLOGENY TARSUS |
| topic |
MAMMALIA MERIDIUNGULATA MORPHOLOGY PHYLOGENY TARSUS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The arrangement of the tarsus has been used to differentiate afrotherian and laurasiatherian ungulates for more than a century, and it is often present in morphological matrices that include appendicular features. Traditionally, it has two states: (i) an alternating tarsus, where proximal elements are interlocked with central and distal elements positioned like the bricks of a wall; and (ii) a serial tarsus, where elements are not interlocked. Over the years, these states became synonymous with the presence or absence of an astragalocuboid contact. Within the South American order Notoungulata, a third disposition was recognized: the reversed alternating tarsus, associated with a calcaneonavicular contact. This state was considered to be a synapomorphy of ‘advanced’ Toxodontia families (Notohippidae, Leontiniidae and Toxodontidae), but a further inspection of its distribution shows that it occurs throughout Mammalia. Additionally, it overlaps the serial tarsus condition as originally defined, and it probably has no functional or phylogenetic significance. Calcaneonavicular and astragalocuboid contacts are non-exclusive, and their presence within a species, genus or family is not constant. Serial and alternating imply movements of the articulations of the mid-tarsus in the transverse axis, while reverse alternating refers to a small calcaneonavicular contact that sometimes occurs in a serial condition or to a significant displacement of the tarsal articulations in a different (proximodistal) axis. The proximodistal arrangement of the joints could be functionally significant. Two new states are observed and defined: (i) ‘flipped serial’, present in Macropodidae, in which the calcaneocuboid articulation is medially displaced and significantly larger than the astragalonavicular contact, but the relationships between proximal and central elements are one to one; and (ii) ‘distal cuboid’, an extreme proximodistal displacement of the astragalonavicular joint. Serial and alternating, as originally defined (i.e. without any reference to which bone contacts which), seem to be the best states for classifying tarsal arrangement though as the disposition of distal or central bones in relationship to proximal bones. Fil: Lorente, Malena. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina |
| description |
The arrangement of the tarsus has been used to differentiate afrotherian and laurasiatherian ungulates for more than a century, and it is often present in morphological matrices that include appendicular features. Traditionally, it has two states: (i) an alternating tarsus, where proximal elements are interlocked with central and distal elements positioned like the bricks of a wall; and (ii) a serial tarsus, where elements are not interlocked. Over the years, these states became synonymous with the presence or absence of an astragalocuboid contact. Within the South American order Notoungulata, a third disposition was recognized: the reversed alternating tarsus, associated with a calcaneonavicular contact. This state was considered to be a synapomorphy of ‘advanced’ Toxodontia families (Notohippidae, Leontiniidae and Toxodontidae), but a further inspection of its distribution shows that it occurs throughout Mammalia. Additionally, it overlaps the serial tarsus condition as originally defined, and it probably has no functional or phylogenetic significance. Calcaneonavicular and astragalocuboid contacts are non-exclusive, and their presence within a species, genus or family is not constant. Serial and alternating imply movements of the articulations of the mid-tarsus in the transverse axis, while reverse alternating refers to a small calcaneonavicular contact that sometimes occurs in a serial condition or to a significant displacement of the tarsal articulations in a different (proximodistal) axis. The proximodistal arrangement of the joints could be functionally significant. Two new states are observed and defined: (i) ‘flipped serial’, present in Macropodidae, in which the calcaneocuboid articulation is medially displaced and significantly larger than the astragalonavicular contact, but the relationships between proximal and central elements are one to one; and (ii) ‘distal cuboid’, an extreme proximodistal displacement of the astragalonavicular joint. Serial and alternating, as originally defined (i.e. without any reference to which bone contacts which), seem to be the best states for classifying tarsal arrangement though as the disposition of distal or central bones in relationship to proximal bones. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/128066 Lorente, Malena; What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna; Wiley Blackwell Publishing, Inc; Journal of Anatomy; 235; 6; 12-2019; 1024-1035 0021-8782 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/128066 |
| identifier_str_mv |
Lorente, Malena; What are the most accurate categories for mammal tarsus arrangement? A review with attention to South American Notoungulata and Litopterna; Wiley Blackwell Publishing, Inc; Journal of Anatomy; 235; 6; 12-2019; 1024-1035 0021-8782 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/joa.13065 info:eu-repo/semantics/altIdentifier/doi/10.1111/joa.13065 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
| publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1853775197767729152 |
| score |
13.25844 |