Self-consistent solutions for line-driven winds of hot massive stars: The m-CAK procedure
- Autores
- Gormaz Matamala, Alex C.; Curé, M.; Cidale, Lydia Sonia; Venero, Roberto Oscar José
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Massive stars present strong stellar winds that are described by the radiation driven wind theory. Accurate mass-loss rates are necessary to properly describe the stellar evolution across the Hertzsprung-Russel Diagram. We present a self-consistent procedure that coupled the hydrodynamics with calculations of the line-force, giving as results the line-force parameters, the velocity field, and the mass-loss rate. Our calculations contemplate the contribution to the line-force multiplier from more than ∼900,000 atomic transitions, an NLTE radiation flux from the photosphere and a quasi-LTE approximation for the occupational numbers. A full set of line-force parameters for T eff ≥ 32,000 K, surface gravities higher than 3.4 dex for two different metallicities are presented, with their corresponding wind parameters (terminal velocities and mass-loss rates). The already known dependence of line-force parameters on effective temperature is enhanced by the dependence on . The terminal velocities present a stepper scaling relation with respect to the escape velocity, this might explain the scatter values observed in the hot side of the bistability jump. Moreover, a comparison of self-consistent mass-loss rates with empirical values shows a good agreement. Self-consistent wind solutions are used as input in FASTWIND to calculate synthetic spectra. We show, comparing with the observed spectra for three stars, that varying the clumping factor, the synthetic spectra rapidly converge into the neighborhood region of the solution. It is important to stress that our self-consistent procedure significantly reduces the number of free parameters needed to obtain a synthetic spectrum.
Fil: Gormaz Matamala, Alex C.. Universidad de Valparaíso; Chile
Fil: Curé, M.. Universidad de Valparaíso; Chile
Fil: Cidale, Lydia Sonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina
Fil: Venero, Roberto Oscar José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina - Materia
-
HYDRODYNAMICS
METHODS: NUMERICAL
STARS: EARLY-TYPE
STARS: MASS-LOSS
STARS: WINDS, OUTFLOWS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/145757
Ver los metadatos del registro completo
id |
CONICETDig_67f398fb41f3437e6a2c335ab47e691a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/145757 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Self-consistent solutions for line-driven winds of hot massive stars: The m-CAK procedureGormaz Matamala, Alex C.Curé, M.Cidale, Lydia SoniaVenero, Roberto Oscar JoséHYDRODYNAMICSMETHODS: NUMERICALSTARS: EARLY-TYPESTARS: MASS-LOSSSTARS: WINDS, OUTFLOWShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Massive stars present strong stellar winds that are described by the radiation driven wind theory. Accurate mass-loss rates are necessary to properly describe the stellar evolution across the Hertzsprung-Russel Diagram. We present a self-consistent procedure that coupled the hydrodynamics with calculations of the line-force, giving as results the line-force parameters, the velocity field, and the mass-loss rate. Our calculations contemplate the contribution to the line-force multiplier from more than ∼900,000 atomic transitions, an NLTE radiation flux from the photosphere and a quasi-LTE approximation for the occupational numbers. A full set of line-force parameters for T eff ≥ 32,000 K, surface gravities higher than 3.4 dex for two different metallicities are presented, with their corresponding wind parameters (terminal velocities and mass-loss rates). The already known dependence of line-force parameters on effective temperature is enhanced by the dependence on . The terminal velocities present a stepper scaling relation with respect to the escape velocity, this might explain the scatter values observed in the hot side of the bistability jump. Moreover, a comparison of self-consistent mass-loss rates with empirical values shows a good agreement. Self-consistent wind solutions are used as input in FASTWIND to calculate synthetic spectra. We show, comparing with the observed spectra for three stars, that varying the clumping factor, the synthetic spectra rapidly converge into the neighborhood region of the solution. It is important to stress that our self-consistent procedure significantly reduces the number of free parameters needed to obtain a synthetic spectrum.Fil: Gormaz Matamala, Alex C.. Universidad de Valparaíso; ChileFil: Curé, M.. Universidad de Valparaíso; ChileFil: Cidale, Lydia Sonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Venero, Roberto Oscar José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaIOP Publishing2019-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/145757Gormaz Matamala, Alex C.; Curé, M.; Cidale, Lydia Sonia; Venero, Roberto Oscar José; Self-consistent solutions for line-driven winds of hot massive stars: The m-CAK procedure; IOP Publishing; Astrophysical Journal; 873; 2; 3-2019; 1-160004-637X1538-4357CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3847/1538-4357/ab05c4info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.3847/1538-4357/ab05c4info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1903.00417info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:13Zoai:ri.conicet.gov.ar:11336/145757instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:13.411CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Self-consistent solutions for line-driven winds of hot massive stars: The m-CAK procedure |
title |
Self-consistent solutions for line-driven winds of hot massive stars: The m-CAK procedure |
spellingShingle |
Self-consistent solutions for line-driven winds of hot massive stars: The m-CAK procedure Gormaz Matamala, Alex C. HYDRODYNAMICS METHODS: NUMERICAL STARS: EARLY-TYPE STARS: MASS-LOSS STARS: WINDS, OUTFLOWS |
title_short |
Self-consistent solutions for line-driven winds of hot massive stars: The m-CAK procedure |
title_full |
Self-consistent solutions for line-driven winds of hot massive stars: The m-CAK procedure |
title_fullStr |
Self-consistent solutions for line-driven winds of hot massive stars: The m-CAK procedure |
title_full_unstemmed |
Self-consistent solutions for line-driven winds of hot massive stars: The m-CAK procedure |
title_sort |
Self-consistent solutions for line-driven winds of hot massive stars: The m-CAK procedure |
dc.creator.none.fl_str_mv |
Gormaz Matamala, Alex C. Curé, M. Cidale, Lydia Sonia Venero, Roberto Oscar José |
author |
Gormaz Matamala, Alex C. |
author_facet |
Gormaz Matamala, Alex C. Curé, M. Cidale, Lydia Sonia Venero, Roberto Oscar José |
author_role |
author |
author2 |
Curé, M. Cidale, Lydia Sonia Venero, Roberto Oscar José |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
HYDRODYNAMICS METHODS: NUMERICAL STARS: EARLY-TYPE STARS: MASS-LOSS STARS: WINDS, OUTFLOWS |
topic |
HYDRODYNAMICS METHODS: NUMERICAL STARS: EARLY-TYPE STARS: MASS-LOSS STARS: WINDS, OUTFLOWS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Massive stars present strong stellar winds that are described by the radiation driven wind theory. Accurate mass-loss rates are necessary to properly describe the stellar evolution across the Hertzsprung-Russel Diagram. We present a self-consistent procedure that coupled the hydrodynamics with calculations of the line-force, giving as results the line-force parameters, the velocity field, and the mass-loss rate. Our calculations contemplate the contribution to the line-force multiplier from more than ∼900,000 atomic transitions, an NLTE radiation flux from the photosphere and a quasi-LTE approximation for the occupational numbers. A full set of line-force parameters for T eff ≥ 32,000 K, surface gravities higher than 3.4 dex for two different metallicities are presented, with their corresponding wind parameters (terminal velocities and mass-loss rates). The already known dependence of line-force parameters on effective temperature is enhanced by the dependence on . The terminal velocities present a stepper scaling relation with respect to the escape velocity, this might explain the scatter values observed in the hot side of the bistability jump. Moreover, a comparison of self-consistent mass-loss rates with empirical values shows a good agreement. Self-consistent wind solutions are used as input in FASTWIND to calculate synthetic spectra. We show, comparing with the observed spectra for three stars, that varying the clumping factor, the synthetic spectra rapidly converge into the neighborhood region of the solution. It is important to stress that our self-consistent procedure significantly reduces the number of free parameters needed to obtain a synthetic spectrum. Fil: Gormaz Matamala, Alex C.. Universidad de Valparaíso; Chile Fil: Curé, M.. Universidad de Valparaíso; Chile Fil: Cidale, Lydia Sonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina Fil: Venero, Roberto Oscar José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; Argentina |
description |
Massive stars present strong stellar winds that are described by the radiation driven wind theory. Accurate mass-loss rates are necessary to properly describe the stellar evolution across the Hertzsprung-Russel Diagram. We present a self-consistent procedure that coupled the hydrodynamics with calculations of the line-force, giving as results the line-force parameters, the velocity field, and the mass-loss rate. Our calculations contemplate the contribution to the line-force multiplier from more than ∼900,000 atomic transitions, an NLTE radiation flux from the photosphere and a quasi-LTE approximation for the occupational numbers. A full set of line-force parameters for T eff ≥ 32,000 K, surface gravities higher than 3.4 dex for two different metallicities are presented, with their corresponding wind parameters (terminal velocities and mass-loss rates). The already known dependence of line-force parameters on effective temperature is enhanced by the dependence on . The terminal velocities present a stepper scaling relation with respect to the escape velocity, this might explain the scatter values observed in the hot side of the bistability jump. Moreover, a comparison of self-consistent mass-loss rates with empirical values shows a good agreement. Self-consistent wind solutions are used as input in FASTWIND to calculate synthetic spectra. We show, comparing with the observed spectra for three stars, that varying the clumping factor, the synthetic spectra rapidly converge into the neighborhood region of the solution. It is important to stress that our self-consistent procedure significantly reduces the number of free parameters needed to obtain a synthetic spectrum. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/145757 Gormaz Matamala, Alex C.; Curé, M.; Cidale, Lydia Sonia; Venero, Roberto Oscar José; Self-consistent solutions for line-driven winds of hot massive stars: The m-CAK procedure; IOP Publishing; Astrophysical Journal; 873; 2; 3-2019; 1-16 0004-637X 1538-4357 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/145757 |
identifier_str_mv |
Gormaz Matamala, Alex C.; Curé, M.; Cidale, Lydia Sonia; Venero, Roberto Oscar José; Self-consistent solutions for line-driven winds of hot massive stars: The m-CAK procedure; IOP Publishing; Astrophysical Journal; 873; 2; 3-2019; 1-16 0004-637X 1538-4357 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3847/1538-4357/ab05c4 info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.3847/1538-4357/ab05c4 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1903.00417 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613360100835328 |
score |
13.070432 |