Autoencoder‐based flow‐analogue probabilistic reconstruction of heat waves from pressure fields
- Autores
- Pérez Aracil, Jorge; Marina, Cosmin M.; Zorita, Eduardo; Barriopedro, David; Zaninelli, Pablo Gabriel; Giuliani, Matteo; Castelletti, Andrea; Gutiérrez, Pedro A.; Salcedo Sanz, Sancho
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper presents a novel hybrid approach for the probabilistic reconstruction of meteorological fields based on the combined use of the analogue method (AM) and deep autoencoders (AEs). The AE–AM algorithm trains a deep AE in the predictor fields, which the encoder filters towards a compressed space of reduced dimensionality. The AM is then applied in this latent space to find similar situations (analogues) in the historical record, from which the target field can be reconstructed. The AE–AM is compared to the classical AM, in which flow analogues are explicitly searched in the fully resolved field of the predictor, which may contain useless information for the reconstruction. We evaluate the performance of these two approaches in reconstructing the daily maximum temperature (target) from sea-level pressure fields (predictor) recorded during eight major European heat waves of the 1950–2010 period. We show that the proposed AE–AM approach outperforms the standard AM algorithm in reconstructing the magnitude and spatial pattern of the considered heat wave events. The improvement ranges from 7% to 22% in skill score, depending on the heat wave analyzed, demonstrating the potential added value of the hybrid method.
Fil: Pérez Aracil, Jorge. Universidad de Alcalá; España
Fil: Marina, Cosmin M.. Universidad de Alcalá; España
Fil: Zorita, Eduardo. Helmholtz-Zentrum Geesthacht; Alemania
Fil: Barriopedro, David. Consejo Superior de Investigaciones Científicas; España
Fil: Zaninelli, Pablo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
Fil: Giuliani, Matteo. Politecnico di Milano; Italia
Fil: Castelletti, Andrea. Politecnico di Milano; Italia
Fil: Gutiérrez, Pedro A.. Universidad de Córdoba; España
Fil: Salcedo Sanz, Sancho. Universidad de Alcalá; España - Materia
-
ANALOGUE METHOD
AUTOENCODERS
FIELD RECONSTRUCTION
HEAT WAVES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/260952
Ver los metadatos del registro completo
id |
CONICETDig_67e5e422adf2965860b5131813a2ea4d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/260952 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Autoencoder‐based flow‐analogue probabilistic reconstruction of heat waves from pressure fieldsPérez Aracil, JorgeMarina, Cosmin M.Zorita, EduardoBarriopedro, DavidZaninelli, Pablo GabrielGiuliani, MatteoCastelletti, AndreaGutiérrez, Pedro A.Salcedo Sanz, SanchoANALOGUE METHODAUTOENCODERSFIELD RECONSTRUCTIONHEAT WAVEShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1This paper presents a novel hybrid approach for the probabilistic reconstruction of meteorological fields based on the combined use of the analogue method (AM) and deep autoencoders (AEs). The AE–AM algorithm trains a deep AE in the predictor fields, which the encoder filters towards a compressed space of reduced dimensionality. The AM is then applied in this latent space to find similar situations (analogues) in the historical record, from which the target field can be reconstructed. The AE–AM is compared to the classical AM, in which flow analogues are explicitly searched in the fully resolved field of the predictor, which may contain useless information for the reconstruction. We evaluate the performance of these two approaches in reconstructing the daily maximum temperature (target) from sea-level pressure fields (predictor) recorded during eight major European heat waves of the 1950–2010 period. We show that the proposed AE–AM approach outperforms the standard AM algorithm in reconstructing the magnitude and spatial pattern of the considered heat wave events. The improvement ranges from 7% to 22% in skill score, depending on the heat wave analyzed, demonstrating the potential added value of the hybrid method.Fil: Pérez Aracil, Jorge. Universidad de Alcalá; EspañaFil: Marina, Cosmin M.. Universidad de Alcalá; EspañaFil: Zorita, Eduardo. Helmholtz-Zentrum Geesthacht; AlemaniaFil: Barriopedro, David. Consejo Superior de Investigaciones Científicas; EspañaFil: Zaninelli, Pablo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Giuliani, Matteo. Politecnico di Milano; ItaliaFil: Castelletti, Andrea. Politecnico di Milano; ItaliaFil: Gutiérrez, Pedro A.. Universidad de Córdoba; EspañaFil: Salcedo Sanz, Sancho. Universidad de Alcalá; EspañaBlackwell Publishing2024-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/260952Pérez Aracil, Jorge; Marina, Cosmin M.; Zorita, Eduardo; Barriopedro, David; Zaninelli, Pablo Gabriel; et al.; Autoencoder‐based flow‐analogue probabilistic reconstruction of heat waves from pressure fields; Blackwell Publishing; Annals of the New York Academy of Sciences; 1541; 1; 10-2024; 230-2420077-8923CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://nyaspubs.onlinelibrary.wiley.com/doi/10.1111/nyas.15243info:eu-repo/semantics/altIdentifier/doi/10.1111/nyas.15243info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:03:52Zoai:ri.conicet.gov.ar:11336/260952instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:03:52.653CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Autoencoder‐based flow‐analogue probabilistic reconstruction of heat waves from pressure fields |
title |
Autoencoder‐based flow‐analogue probabilistic reconstruction of heat waves from pressure fields |
spellingShingle |
Autoencoder‐based flow‐analogue probabilistic reconstruction of heat waves from pressure fields Pérez Aracil, Jorge ANALOGUE METHOD AUTOENCODERS FIELD RECONSTRUCTION HEAT WAVES |
title_short |
Autoencoder‐based flow‐analogue probabilistic reconstruction of heat waves from pressure fields |
title_full |
Autoencoder‐based flow‐analogue probabilistic reconstruction of heat waves from pressure fields |
title_fullStr |
Autoencoder‐based flow‐analogue probabilistic reconstruction of heat waves from pressure fields |
title_full_unstemmed |
Autoencoder‐based flow‐analogue probabilistic reconstruction of heat waves from pressure fields |
title_sort |
Autoencoder‐based flow‐analogue probabilistic reconstruction of heat waves from pressure fields |
dc.creator.none.fl_str_mv |
Pérez Aracil, Jorge Marina, Cosmin M. Zorita, Eduardo Barriopedro, David Zaninelli, Pablo Gabriel Giuliani, Matteo Castelletti, Andrea Gutiérrez, Pedro A. Salcedo Sanz, Sancho |
author |
Pérez Aracil, Jorge |
author_facet |
Pérez Aracil, Jorge Marina, Cosmin M. Zorita, Eduardo Barriopedro, David Zaninelli, Pablo Gabriel Giuliani, Matteo Castelletti, Andrea Gutiérrez, Pedro A. Salcedo Sanz, Sancho |
author_role |
author |
author2 |
Marina, Cosmin M. Zorita, Eduardo Barriopedro, David Zaninelli, Pablo Gabriel Giuliani, Matteo Castelletti, Andrea Gutiérrez, Pedro A. Salcedo Sanz, Sancho |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
ANALOGUE METHOD AUTOENCODERS FIELD RECONSTRUCTION HEAT WAVES |
topic |
ANALOGUE METHOD AUTOENCODERS FIELD RECONSTRUCTION HEAT WAVES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper presents a novel hybrid approach for the probabilistic reconstruction of meteorological fields based on the combined use of the analogue method (AM) and deep autoencoders (AEs). The AE–AM algorithm trains a deep AE in the predictor fields, which the encoder filters towards a compressed space of reduced dimensionality. The AM is then applied in this latent space to find similar situations (analogues) in the historical record, from which the target field can be reconstructed. The AE–AM is compared to the classical AM, in which flow analogues are explicitly searched in the fully resolved field of the predictor, which may contain useless information for the reconstruction. We evaluate the performance of these two approaches in reconstructing the daily maximum temperature (target) from sea-level pressure fields (predictor) recorded during eight major European heat waves of the 1950–2010 period. We show that the proposed AE–AM approach outperforms the standard AM algorithm in reconstructing the magnitude and spatial pattern of the considered heat wave events. The improvement ranges from 7% to 22% in skill score, depending on the heat wave analyzed, demonstrating the potential added value of the hybrid method. Fil: Pérez Aracil, Jorge. Universidad de Alcalá; España Fil: Marina, Cosmin M.. Universidad de Alcalá; España Fil: Zorita, Eduardo. Helmholtz-Zentrum Geesthacht; Alemania Fil: Barriopedro, David. Consejo Superior de Investigaciones Científicas; España Fil: Zaninelli, Pablo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina Fil: Giuliani, Matteo. Politecnico di Milano; Italia Fil: Castelletti, Andrea. Politecnico di Milano; Italia Fil: Gutiérrez, Pedro A.. Universidad de Córdoba; España Fil: Salcedo Sanz, Sancho. Universidad de Alcalá; España |
description |
This paper presents a novel hybrid approach for the probabilistic reconstruction of meteorological fields based on the combined use of the analogue method (AM) and deep autoencoders (AEs). The AE–AM algorithm trains a deep AE in the predictor fields, which the encoder filters towards a compressed space of reduced dimensionality. The AM is then applied in this latent space to find similar situations (analogues) in the historical record, from which the target field can be reconstructed. The AE–AM is compared to the classical AM, in which flow analogues are explicitly searched in the fully resolved field of the predictor, which may contain useless information for the reconstruction. We evaluate the performance of these two approaches in reconstructing the daily maximum temperature (target) from sea-level pressure fields (predictor) recorded during eight major European heat waves of the 1950–2010 period. We show that the proposed AE–AM approach outperforms the standard AM algorithm in reconstructing the magnitude and spatial pattern of the considered heat wave events. The improvement ranges from 7% to 22% in skill score, depending on the heat wave analyzed, demonstrating the potential added value of the hybrid method. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/260952 Pérez Aracil, Jorge; Marina, Cosmin M.; Zorita, Eduardo; Barriopedro, David; Zaninelli, Pablo Gabriel; et al.; Autoencoder‐based flow‐analogue probabilistic reconstruction of heat waves from pressure fields; Blackwell Publishing; Annals of the New York Academy of Sciences; 1541; 1; 10-2024; 230-242 0077-8923 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/260952 |
identifier_str_mv |
Pérez Aracil, Jorge; Marina, Cosmin M.; Zorita, Eduardo; Barriopedro, David; Zaninelli, Pablo Gabriel; et al.; Autoencoder‐based flow‐analogue probabilistic reconstruction of heat waves from pressure fields; Blackwell Publishing; Annals of the New York Academy of Sciences; 1541; 1; 10-2024; 230-242 0077-8923 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://nyaspubs.onlinelibrary.wiley.com/doi/10.1111/nyas.15243 info:eu-repo/semantics/altIdentifier/doi/10.1111/nyas.15243 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Blackwell Publishing |
publisher.none.fl_str_mv |
Blackwell Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781281957838848 |
score |
12.982451 |