Cerebral cortex layer segmentation using diffusion magnetic resonance imaging in vivo with applications to laminar connections and working memory analysis
- Autores
- Zhang, Jie; Sun, Zhe; Duan, Feng; Shi, Liang; Zhang, Yu; Solé Casals, Jordi; Caiafa, César Federico
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Understanding the laminar brain structure is of great help in further developing our knowledge of the functions of the brain. However, since most layer segmentation methods are invasive, it is difficult to apply them to the human brain in vivo. To systematically explore the human brain's laminar structure noninvasively, the K-means clustering algorithm was used to automatically segment the left hemisphere into two layers, the superficial and deep layers, using a 7 Tesla (T) diffusion magnetic resonance imaging (dMRI)open dataset. The obtained layer thickness was then compared with the layer thickness of the BigBrain reference dataset, which segmented the neocortex into six layers based on the von Economo atlas. The results show a significant correlation not only between our automatically segmented superficial layer thickness and the thickness of layers 1–3 from the reference histological data, but also between our automatically segmented deep layer thickness and the thickness of layers 4–6 from the reference histological data. Second, we constructed the laminar connections between two pairs of unidirectional connected regions, which is consistent with prior research. Finally, we conducted the laminar analysis of the working memory, which was challenging to do in the past, and explained the conclusions of the functional analysis. Our work successfully demonstrates that it is possible to segment the human cortex noninvasively into layers using dMRI data and further explores the mechanisms of the human brain.
Fil: Zhang, Jie. Nankai University; China
Fil: Sun, Zhe. No especifíca;
Fil: Duan, Feng. Nankai University; China
Fil: Shi, Liang. Nankai University; China
Fil: Zhang, Yu. Lehigh University; Estados Unidos
Fil: Solé Casals, Jordi. Nankai University; China
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina - Materia
-
CORTICAL LAYERS
DIFFUSION MAGNETIC RESONANCE IMAGING
IN VIVO
LAMINAR CONNECTIONS
NONINVASIVE
WORKING MEMORY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/214006
Ver los metadatos del registro completo
| id |
CONICETDig_66f13f93f223741785a4c7a6fbc22e8a |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/214006 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Cerebral cortex layer segmentation using diffusion magnetic resonance imaging in vivo with applications to laminar connections and working memory analysisZhang, JieSun, ZheDuan, FengShi, LiangZhang, YuSolé Casals, JordiCaiafa, César FedericoCORTICAL LAYERSDIFFUSION MAGNETIC RESONANCE IMAGINGIN VIVOLAMINAR CONNECTIONSNONINVASIVEWORKING MEMORYhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Understanding the laminar brain structure is of great help in further developing our knowledge of the functions of the brain. However, since most layer segmentation methods are invasive, it is difficult to apply them to the human brain in vivo. To systematically explore the human brain's laminar structure noninvasively, the K-means clustering algorithm was used to automatically segment the left hemisphere into two layers, the superficial and deep layers, using a 7 Tesla (T) diffusion magnetic resonance imaging (dMRI)open dataset. The obtained layer thickness was then compared with the layer thickness of the BigBrain reference dataset, which segmented the neocortex into six layers based on the von Economo atlas. The results show a significant correlation not only between our automatically segmented superficial layer thickness and the thickness of layers 1–3 from the reference histological data, but also between our automatically segmented deep layer thickness and the thickness of layers 4–6 from the reference histological data. Second, we constructed the laminar connections between two pairs of unidirectional connected regions, which is consistent with prior research. Finally, we conducted the laminar analysis of the working memory, which was challenging to do in the past, and explained the conclusions of the functional analysis. Our work successfully demonstrates that it is possible to segment the human cortex noninvasively into layers using dMRI data and further explores the mechanisms of the human brain.Fil: Zhang, Jie. Nankai University; ChinaFil: Sun, Zhe. No especifíca;Fil: Duan, Feng. Nankai University; ChinaFil: Shi, Liang. Nankai University; ChinaFil: Zhang, Yu. Lehigh University; Estados UnidosFil: Solé Casals, Jordi. Nankai University; ChinaFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaWiley-liss, div John Wiley & Sons Inc.2022-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/214006Zhang, Jie; Sun, Zhe; Duan, Feng; Shi, Liang; Zhang, Yu; et al.; Cerebral cortex layer segmentation using diffusion magnetic resonance imaging in vivo with applications to laminar connections and working memory analysis; Wiley-liss, div John Wiley & Sons Inc.; Human Brain Mapping; 43; 17; 7-2022; 5220-52341065-9471CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/hbm.25998info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:56:36Zoai:ri.conicet.gov.ar:11336/214006instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:56:37.174CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Cerebral cortex layer segmentation using diffusion magnetic resonance imaging in vivo with applications to laminar connections and working memory analysis |
| title |
Cerebral cortex layer segmentation using diffusion magnetic resonance imaging in vivo with applications to laminar connections and working memory analysis |
| spellingShingle |
Cerebral cortex layer segmentation using diffusion magnetic resonance imaging in vivo with applications to laminar connections and working memory analysis Zhang, Jie CORTICAL LAYERS DIFFUSION MAGNETIC RESONANCE IMAGING IN VIVO LAMINAR CONNECTIONS NONINVASIVE WORKING MEMORY |
| title_short |
Cerebral cortex layer segmentation using diffusion magnetic resonance imaging in vivo with applications to laminar connections and working memory analysis |
| title_full |
Cerebral cortex layer segmentation using diffusion magnetic resonance imaging in vivo with applications to laminar connections and working memory analysis |
| title_fullStr |
Cerebral cortex layer segmentation using diffusion magnetic resonance imaging in vivo with applications to laminar connections and working memory analysis |
| title_full_unstemmed |
Cerebral cortex layer segmentation using diffusion magnetic resonance imaging in vivo with applications to laminar connections and working memory analysis |
| title_sort |
Cerebral cortex layer segmentation using diffusion magnetic resonance imaging in vivo with applications to laminar connections and working memory analysis |
| dc.creator.none.fl_str_mv |
Zhang, Jie Sun, Zhe Duan, Feng Shi, Liang Zhang, Yu Solé Casals, Jordi Caiafa, César Federico |
| author |
Zhang, Jie |
| author_facet |
Zhang, Jie Sun, Zhe Duan, Feng Shi, Liang Zhang, Yu Solé Casals, Jordi Caiafa, César Federico |
| author_role |
author |
| author2 |
Sun, Zhe Duan, Feng Shi, Liang Zhang, Yu Solé Casals, Jordi Caiafa, César Federico |
| author2_role |
author author author author author author |
| dc.subject.none.fl_str_mv |
CORTICAL LAYERS DIFFUSION MAGNETIC RESONANCE IMAGING IN VIVO LAMINAR CONNECTIONS NONINVASIVE WORKING MEMORY |
| topic |
CORTICAL LAYERS DIFFUSION MAGNETIC RESONANCE IMAGING IN VIVO LAMINAR CONNECTIONS NONINVASIVE WORKING MEMORY |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Understanding the laminar brain structure is of great help in further developing our knowledge of the functions of the brain. However, since most layer segmentation methods are invasive, it is difficult to apply them to the human brain in vivo. To systematically explore the human brain's laminar structure noninvasively, the K-means clustering algorithm was used to automatically segment the left hemisphere into two layers, the superficial and deep layers, using a 7 Tesla (T) diffusion magnetic resonance imaging (dMRI)open dataset. The obtained layer thickness was then compared with the layer thickness of the BigBrain reference dataset, which segmented the neocortex into six layers based on the von Economo atlas. The results show a significant correlation not only between our automatically segmented superficial layer thickness and the thickness of layers 1–3 from the reference histological data, but also between our automatically segmented deep layer thickness and the thickness of layers 4–6 from the reference histological data. Second, we constructed the laminar connections between two pairs of unidirectional connected regions, which is consistent with prior research. Finally, we conducted the laminar analysis of the working memory, which was challenging to do in the past, and explained the conclusions of the functional analysis. Our work successfully demonstrates that it is possible to segment the human cortex noninvasively into layers using dMRI data and further explores the mechanisms of the human brain. Fil: Zhang, Jie. Nankai University; China Fil: Sun, Zhe. No especifíca; Fil: Duan, Feng. Nankai University; China Fil: Shi, Liang. Nankai University; China Fil: Zhang, Yu. Lehigh University; Estados Unidos Fil: Solé Casals, Jordi. Nankai University; China Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina |
| description |
Understanding the laminar brain structure is of great help in further developing our knowledge of the functions of the brain. However, since most layer segmentation methods are invasive, it is difficult to apply them to the human brain in vivo. To systematically explore the human brain's laminar structure noninvasively, the K-means clustering algorithm was used to automatically segment the left hemisphere into two layers, the superficial and deep layers, using a 7 Tesla (T) diffusion magnetic resonance imaging (dMRI)open dataset. The obtained layer thickness was then compared with the layer thickness of the BigBrain reference dataset, which segmented the neocortex into six layers based on the von Economo atlas. The results show a significant correlation not only between our automatically segmented superficial layer thickness and the thickness of layers 1–3 from the reference histological data, but also between our automatically segmented deep layer thickness and the thickness of layers 4–6 from the reference histological data. Second, we constructed the laminar connections between two pairs of unidirectional connected regions, which is consistent with prior research. Finally, we conducted the laminar analysis of the working memory, which was challenging to do in the past, and explained the conclusions of the functional analysis. Our work successfully demonstrates that it is possible to segment the human cortex noninvasively into layers using dMRI data and further explores the mechanisms of the human brain. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/214006 Zhang, Jie; Sun, Zhe; Duan, Feng; Shi, Liang; Zhang, Yu; et al.; Cerebral cortex layer segmentation using diffusion magnetic resonance imaging in vivo with applications to laminar connections and working memory analysis; Wiley-liss, div John Wiley & Sons Inc.; Human Brain Mapping; 43; 17; 7-2022; 5220-5234 1065-9471 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/214006 |
| identifier_str_mv |
Zhang, Jie; Sun, Zhe; Duan, Feng; Shi, Liang; Zhang, Yu; et al.; Cerebral cortex layer segmentation using diffusion magnetic resonance imaging in vivo with applications to laminar connections and working memory analysis; Wiley-liss, div John Wiley & Sons Inc.; Human Brain Mapping; 43; 17; 7-2022; 5220-5234 1065-9471 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/hbm.25998 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Wiley-liss, div John Wiley & Sons Inc. |
| publisher.none.fl_str_mv |
Wiley-liss, div John Wiley & Sons Inc. |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848598338983690240 |
| score |
13.25334 |