Acute and Subchronic Toxicity of Arsenite and Zinc to Tadpoles of Rhinella arenarum Both Alone and in Combination
- Autores
- Brodeur, Celine Marie Julie; Asorey, Cynthia Melina; Sztrum, Abelardo; Herkovits, Jorge
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The current study evaluated acute and subchronic toxicity of arsenite (As3+) and zinc (Zn2+) to stage 25 tadpoles of Rhinella arenarum in both single and joint laboratory exposures. LC50 values obtained for As3+ were elevated and remained within the range of 46 to 50 mg/L of As3+ between 4 and 17 d of exposure. Growth of tadpoles was completely inhibited with 30 mg/L of As3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+) and zinc (Zn2+) to stage 25 tadpoles of Rhinella arenarum in both single and joint laboratory exposures. LC50 values obtained for As3+ were elevated and remained within the range of 46 to 50 mg/L of As3+ between 4 and 17 d of exposure. Growth of tadpoles was completely inhibited with 30 mg/L of As3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.in both single and joint laboratory exposures. LC50 values obtained for As3+ were elevated and remained within the range of 46 to 50 mg/L of As3+ between 4 and 17 d of exposure. Growth of tadpoles was completely inhibited with 30 mg/L of As3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+ were elevated and remained within the range of 46 to 50 mg/L of As3+ between 4 and 17 d of exposure. Growth of tadpoles was completely inhibited with 30 mg/L of As3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+ between 4 and 17 d of exposure. Growth of tadpoles was completely inhibited with 30 mg/L of As3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+ serves to antagonize growth effects in this range of concentrations.
Fil: Brodeur, Celine Marie Julie. Fundación Pro Salud y Medio Ambiente. Instituto de Ciencias Ambientales y Salud; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Asorey, Cynthia Melina. Fundación Pro Salud y Medio Ambiente. Instituto de Ciencias Ambientales y Salud; Argentina
Fil: Sztrum, Abelardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación Pro Salud y Medio Ambiente. Instituto de Ciencias Ambientales y Salud; Argentina
Fil: Herkovits, Jorge. Fundación Pro Salud y Medio Ambiente. Instituto de Ciencias Ambientales y Salud; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Arsenic
Zinc
antagonisms
synergism - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/243332
Ver los metadatos del registro completo
id |
CONICETDig_667d7c30e5ff33acdff9d217bca66baf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/243332 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Acute and Subchronic Toxicity of Arsenite and Zinc to Tadpoles of Rhinella arenarum Both Alone and in CombinationBrodeur, Celine Marie JulieAsorey, Cynthia MelinaSztrum, AbelardoHerkovits, JorgeArsenicZincantagonismssynergismhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The current study evaluated acute and subchronic toxicity of arsenite (As3+) and zinc (Zn2+) to stage 25 tadpoles of Rhinella arenarum in both single and joint laboratory exposures. LC50 values obtained for As3+ were elevated and remained within the range of 46 to 50 mg/L of As3+ between 4 and 17 d of exposure. Growth of tadpoles was completely inhibited with 30 mg/L of As3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+) and zinc (Zn2+) to stage 25 tadpoles of Rhinella arenarum in both single and joint laboratory exposures. LC50 values obtained for As3+ were elevated and remained within the range of 46 to 50 mg/L of As3+ between 4 and 17 d of exposure. Growth of tadpoles was completely inhibited with 30 mg/L of As3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.in both single and joint laboratory exposures. LC50 values obtained for As3+ were elevated and remained within the range of 46 to 50 mg/L of As3+ between 4 and 17 d of exposure. Growth of tadpoles was completely inhibited with 30 mg/L of As3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+ were elevated and remained within the range of 46 to 50 mg/L of As3+ between 4 and 17 d of exposure. Growth of tadpoles was completely inhibited with 30 mg/L of As3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+ between 4 and 17 d of exposure. Growth of tadpoles was completely inhibited with 30 mg/L of As3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+ serves to antagonize growth effects in this range of concentrations.Fil: Brodeur, Celine Marie Julie. Fundación Pro Salud y Medio Ambiente. Instituto de Ciencias Ambientales y Salud; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Asorey, Cynthia Melina. Fundación Pro Salud y Medio Ambiente. Instituto de Ciencias Ambientales y Salud; ArgentinaFil: Sztrum, Abelardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación Pro Salud y Medio Ambiente. Instituto de Ciencias Ambientales y Salud; ArgentinaFil: Herkovits, Jorge. Fundación Pro Salud y Medio Ambiente. Instituto de Ciencias Ambientales y Salud; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaTaylor & Francis2009-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/243332Brodeur, Celine Marie Julie; Asorey, Cynthia Melina; Sztrum, Abelardo; Herkovits, Jorge; Acute and Subchronic Toxicity of Arsenite and Zinc to Tadpoles of Rhinella arenarum Both Alone and in Combination; Taylor & Francis; Journal of Toxicology and Environmental Health-Part A-Current Issues; 72; 14; 7-2009; 884-8901528-7394CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/15287390902959524info:eu-repo/semantics/altIdentifier/doi/10.1080/15287390902959524info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:58Zoai:ri.conicet.gov.ar:11336/243332instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:58.615CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Acute and Subchronic Toxicity of Arsenite and Zinc to Tadpoles of Rhinella arenarum Both Alone and in Combination |
title |
Acute and Subchronic Toxicity of Arsenite and Zinc to Tadpoles of Rhinella arenarum Both Alone and in Combination |
spellingShingle |
Acute and Subchronic Toxicity of Arsenite and Zinc to Tadpoles of Rhinella arenarum Both Alone and in Combination Brodeur, Celine Marie Julie Arsenic Zinc antagonisms synergism |
title_short |
Acute and Subchronic Toxicity of Arsenite and Zinc to Tadpoles of Rhinella arenarum Both Alone and in Combination |
title_full |
Acute and Subchronic Toxicity of Arsenite and Zinc to Tadpoles of Rhinella arenarum Both Alone and in Combination |
title_fullStr |
Acute and Subchronic Toxicity of Arsenite and Zinc to Tadpoles of Rhinella arenarum Both Alone and in Combination |
title_full_unstemmed |
Acute and Subchronic Toxicity of Arsenite and Zinc to Tadpoles of Rhinella arenarum Both Alone and in Combination |
title_sort |
Acute and Subchronic Toxicity of Arsenite and Zinc to Tadpoles of Rhinella arenarum Both Alone and in Combination |
dc.creator.none.fl_str_mv |
Brodeur, Celine Marie Julie Asorey, Cynthia Melina Sztrum, Abelardo Herkovits, Jorge |
author |
Brodeur, Celine Marie Julie |
author_facet |
Brodeur, Celine Marie Julie Asorey, Cynthia Melina Sztrum, Abelardo Herkovits, Jorge |
author_role |
author |
author2 |
Asorey, Cynthia Melina Sztrum, Abelardo Herkovits, Jorge |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Arsenic Zinc antagonisms synergism |
topic |
Arsenic Zinc antagonisms synergism |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The current study evaluated acute and subchronic toxicity of arsenite (As3+) and zinc (Zn2+) to stage 25 tadpoles of Rhinella arenarum in both single and joint laboratory exposures. LC50 values obtained for As3+ were elevated and remained within the range of 46 to 50 mg/L of As3+ between 4 and 17 d of exposure. Growth of tadpoles was completely inhibited with 30 mg/L of As3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+) and zinc (Zn2+) to stage 25 tadpoles of Rhinella arenarum in both single and joint laboratory exposures. LC50 values obtained for As3+ were elevated and remained within the range of 46 to 50 mg/L of As3+ between 4 and 17 d of exposure. Growth of tadpoles was completely inhibited with 30 mg/L of As3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.in both single and joint laboratory exposures. LC50 values obtained for As3+ were elevated and remained within the range of 46 to 50 mg/L of As3+ between 4 and 17 d of exposure. Growth of tadpoles was completely inhibited with 30 mg/L of As3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+ were elevated and remained within the range of 46 to 50 mg/L of As3+ between 4 and 17 d of exposure. Growth of tadpoles was completely inhibited with 30 mg/L of As3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+ between 4 and 17 d of exposure. Growth of tadpoles was completely inhibited with 30 mg/L of As3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+ serves to antagonize growth effects in this range of concentrations. Fil: Brodeur, Celine Marie Julie. Fundación Pro Salud y Medio Ambiente. Instituto de Ciencias Ambientales y Salud; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Asorey, Cynthia Melina. Fundación Pro Salud y Medio Ambiente. Instituto de Ciencias Ambientales y Salud; Argentina Fil: Sztrum, Abelardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación Pro Salud y Medio Ambiente. Instituto de Ciencias Ambientales y Salud; Argentina Fil: Herkovits, Jorge. Fundación Pro Salud y Medio Ambiente. Instituto de Ciencias Ambientales y Salud; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The current study evaluated acute and subchronic toxicity of arsenite (As3+) and zinc (Zn2+) to stage 25 tadpoles of Rhinella arenarum in both single and joint laboratory exposures. LC50 values obtained for As3+ were elevated and remained within the range of 46 to 50 mg/L of As3+ between 4 and 17 d of exposure. Growth of tadpoles was completely inhibited with 30 mg/L of As3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+) and zinc (Zn2+) to stage 25 tadpoles of Rhinella arenarum in both single and joint laboratory exposures. LC50 values obtained for As3+ were elevated and remained within the range of 46 to 50 mg/L of As3+ between 4 and 17 d of exposure. Growth of tadpoles was completely inhibited with 30 mg/L of As3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.in both single and joint laboratory exposures. LC50 values obtained for As3+ were elevated and remained within the range of 46 to 50 mg/L of As3+ between 4 and 17 d of exposure. Growth of tadpoles was completely inhibited with 30 mg/L of As3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+ were elevated and remained within the range of 46 to 50 mg/L of As3+ between 4 and 17 d of exposure. Growth of tadpoles was completely inhibited with 30 mg/L of As3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+ between 4 and 17 d of exposure. Growth of tadpoles was completely inhibited with 30 mg/L of As3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+, demonstrating the presence of ecologically relevant sublethal effects at concentrations lower than those resulting in lethality. With respect to Zn2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+, a 96-h LC50 value of 2.49 mg/L was calculated in soft water. Contrary to results obtained for As3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+, LC50 values of Zn2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+ gradually decreased with increasing exposure duration, from 2.49 mg/L at 96 h to 1.30 mg/L after 21 d. In joint exposures to both metals, the type of interaction observed between As3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+ and Zn2+ was concentration dependent. Lethal effects of As3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+ were mitigated, unaffected, or potentiated by 0.01, 0.1, and 1?2 mg/L of Zn2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+, respectively. However, although 0.01 mg/L of Zn2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+ significantly reduced lethality of As3+-exposed tadpoles, the same concentration of Zn2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+ did not help to reverse the stunt growth of these animals. Further studies need to examine which are the lowest concentrations As3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.3+ required to reduce growth and whether Zn2+ serves to antagonize growth effects in this range of concentrations.2+ serves to antagonize growth effects in this range of concentrations. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/243332 Brodeur, Celine Marie Julie; Asorey, Cynthia Melina; Sztrum, Abelardo; Herkovits, Jorge; Acute and Subchronic Toxicity of Arsenite and Zinc to Tadpoles of Rhinella arenarum Both Alone and in Combination; Taylor & Francis; Journal of Toxicology and Environmental Health-Part A-Current Issues; 72; 14; 7-2009; 884-890 1528-7394 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/243332 |
identifier_str_mv |
Brodeur, Celine Marie Julie; Asorey, Cynthia Melina; Sztrum, Abelardo; Herkovits, Jorge; Acute and Subchronic Toxicity of Arsenite and Zinc to Tadpoles of Rhinella arenarum Both Alone and in Combination; Taylor & Francis; Journal of Toxicology and Environmental Health-Part A-Current Issues; 72; 14; 7-2009; 884-890 1528-7394 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/15287390902959524 info:eu-repo/semantics/altIdentifier/doi/10.1080/15287390902959524 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268636435185664 |
score |
13.13397 |