Impact of grazing on species composition: Adding complexity to a generalized model

Autores
Oesterheld, Martin; Semmartin, María Gisela
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The impact of grazing widely differs among plant communities. A generalized model published in 1988 proposed that this variation could be accounted for by the interaction between primary productivity and the evolutionary history of grazing. As productivity increased, the model predicted larger changes of species composition. Evolutionary history of grazing interacted with productivity: the changes in low-production systems were smaller if evolutionary history was long, whereas the changes in high-production systems were independent of evolutionary history. In this paper, we focus on: (i) the difficulties of determining the evolutionary history of grazing of a community, and (ii) additional mechanisms, which, as a sequence of filters in the process of community assembly, could be operating across the gradient of primary production. Assigning a given evolutionary history of grazing to a site has been difficult due to the lack of information on the historical population and distribution of herbivores with an adequate spatial and temporal resolution, and the lack of agreement on the size of the relevant evolutionary time window. Regarding the variation through a gradient of primary production, we propose three additional mechanisms coherent with the prediction of the model. First, the regional pool of available species increases with primary production. Second, grazing intensity (consumption as a proportion of above-ground production) also increases with primary production. Third, the strength of interspecific positive biotic interactions that protect plants from herbivores decreases with primary production. We highlight an additional potential mechanism, seed dispersal, whose variation across the gradient of productivity is not yet sufficiently understood. By connecting the logic of environmental filters to explain community assemblage with the original proposition of the generalized model, we suggest a series of research lines that can lead to a better understanding of why different communities respond differently to grazing.
Fil: Oesterheld, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Semmartin, María Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Materia
COMMUNITY ASSEMBLY
DISTURBANCE
EVOLUTIONARY HISTORY
PRIMARY PRODUCTIVITY
SUCCESSION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/97680

id CONICETDig_660d992493de67675a227367b3e8f150
oai_identifier_str oai:ri.conicet.gov.ar:11336/97680
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Impact of grazing on species composition: Adding complexity to a generalized modelOesterheld, MartinSemmartin, María GiselaCOMMUNITY ASSEMBLYDISTURBANCEEVOLUTIONARY HISTORYPRIMARY PRODUCTIVITYSUCCESSIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The impact of grazing widely differs among plant communities. A generalized model published in 1988 proposed that this variation could be accounted for by the interaction between primary productivity and the evolutionary history of grazing. As productivity increased, the model predicted larger changes of species composition. Evolutionary history of grazing interacted with productivity: the changes in low-production systems were smaller if evolutionary history was long, whereas the changes in high-production systems were independent of evolutionary history. In this paper, we focus on: (i) the difficulties of determining the evolutionary history of grazing of a community, and (ii) additional mechanisms, which, as a sequence of filters in the process of community assembly, could be operating across the gradient of primary production. Assigning a given evolutionary history of grazing to a site has been difficult due to the lack of information on the historical population and distribution of herbivores with an adequate spatial and temporal resolution, and the lack of agreement on the size of the relevant evolutionary time window. Regarding the variation through a gradient of primary production, we propose three additional mechanisms coherent with the prediction of the model. First, the regional pool of available species increases with primary production. Second, grazing intensity (consumption as a proportion of above-ground production) also increases with primary production. Third, the strength of interspecific positive biotic interactions that protect plants from herbivores decreases with primary production. We highlight an additional potential mechanism, seed dispersal, whose variation across the gradient of productivity is not yet sufficiently understood. By connecting the logic of environmental filters to explain community assemblage with the original proposition of the generalized model, we suggest a series of research lines that can lead to a better understanding of why different communities respond differently to grazing.Fil: Oesterheld, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Semmartin, María Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaWiley Blackwell Publishing, Inc2011-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/97680Oesterheld, Martin; Semmartin, María Gisela; Impact of grazing on species composition: Adding complexity to a generalized model; Wiley Blackwell Publishing, Inc; Austral Ecology; 36; 8; 12-2011; 881-8901442-9985CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1442-9993.2010.02235.xinfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1442-9993.2010.02235.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:48:23Zoai:ri.conicet.gov.ar:11336/97680instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:48:23.366CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Impact of grazing on species composition: Adding complexity to a generalized model
title Impact of grazing on species composition: Adding complexity to a generalized model
spellingShingle Impact of grazing on species composition: Adding complexity to a generalized model
Oesterheld, Martin
COMMUNITY ASSEMBLY
DISTURBANCE
EVOLUTIONARY HISTORY
PRIMARY PRODUCTIVITY
SUCCESSION
title_short Impact of grazing on species composition: Adding complexity to a generalized model
title_full Impact of grazing on species composition: Adding complexity to a generalized model
title_fullStr Impact of grazing on species composition: Adding complexity to a generalized model
title_full_unstemmed Impact of grazing on species composition: Adding complexity to a generalized model
title_sort Impact of grazing on species composition: Adding complexity to a generalized model
dc.creator.none.fl_str_mv Oesterheld, Martin
Semmartin, María Gisela
author Oesterheld, Martin
author_facet Oesterheld, Martin
Semmartin, María Gisela
author_role author
author2 Semmartin, María Gisela
author2_role author
dc.subject.none.fl_str_mv COMMUNITY ASSEMBLY
DISTURBANCE
EVOLUTIONARY HISTORY
PRIMARY PRODUCTIVITY
SUCCESSION
topic COMMUNITY ASSEMBLY
DISTURBANCE
EVOLUTIONARY HISTORY
PRIMARY PRODUCTIVITY
SUCCESSION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The impact of grazing widely differs among plant communities. A generalized model published in 1988 proposed that this variation could be accounted for by the interaction between primary productivity and the evolutionary history of grazing. As productivity increased, the model predicted larger changes of species composition. Evolutionary history of grazing interacted with productivity: the changes in low-production systems were smaller if evolutionary history was long, whereas the changes in high-production systems were independent of evolutionary history. In this paper, we focus on: (i) the difficulties of determining the evolutionary history of grazing of a community, and (ii) additional mechanisms, which, as a sequence of filters in the process of community assembly, could be operating across the gradient of primary production. Assigning a given evolutionary history of grazing to a site has been difficult due to the lack of information on the historical population and distribution of herbivores with an adequate spatial and temporal resolution, and the lack of agreement on the size of the relevant evolutionary time window. Regarding the variation through a gradient of primary production, we propose three additional mechanisms coherent with the prediction of the model. First, the regional pool of available species increases with primary production. Second, grazing intensity (consumption as a proportion of above-ground production) also increases with primary production. Third, the strength of interspecific positive biotic interactions that protect plants from herbivores decreases with primary production. We highlight an additional potential mechanism, seed dispersal, whose variation across the gradient of productivity is not yet sufficiently understood. By connecting the logic of environmental filters to explain community assemblage with the original proposition of the generalized model, we suggest a series of research lines that can lead to a better understanding of why different communities respond differently to grazing.
Fil: Oesterheld, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Semmartin, María Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
description The impact of grazing widely differs among plant communities. A generalized model published in 1988 proposed that this variation could be accounted for by the interaction between primary productivity and the evolutionary history of grazing. As productivity increased, the model predicted larger changes of species composition. Evolutionary history of grazing interacted with productivity: the changes in low-production systems were smaller if evolutionary history was long, whereas the changes in high-production systems were independent of evolutionary history. In this paper, we focus on: (i) the difficulties of determining the evolutionary history of grazing of a community, and (ii) additional mechanisms, which, as a sequence of filters in the process of community assembly, could be operating across the gradient of primary production. Assigning a given evolutionary history of grazing to a site has been difficult due to the lack of information on the historical population and distribution of herbivores with an adequate spatial and temporal resolution, and the lack of agreement on the size of the relevant evolutionary time window. Regarding the variation through a gradient of primary production, we propose three additional mechanisms coherent with the prediction of the model. First, the regional pool of available species increases with primary production. Second, grazing intensity (consumption as a proportion of above-ground production) also increases with primary production. Third, the strength of interspecific positive biotic interactions that protect plants from herbivores decreases with primary production. We highlight an additional potential mechanism, seed dispersal, whose variation across the gradient of productivity is not yet sufficiently understood. By connecting the logic of environmental filters to explain community assemblage with the original proposition of the generalized model, we suggest a series of research lines that can lead to a better understanding of why different communities respond differently to grazing.
publishDate 2011
dc.date.none.fl_str_mv 2011-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/97680
Oesterheld, Martin; Semmartin, María Gisela; Impact of grazing on species composition: Adding complexity to a generalized model; Wiley Blackwell Publishing, Inc; Austral Ecology; 36; 8; 12-2011; 881-890
1442-9985
CONICET Digital
CONICET
url http://hdl.handle.net/11336/97680
identifier_str_mv Oesterheld, Martin; Semmartin, María Gisela; Impact of grazing on species composition: Adding complexity to a generalized model; Wiley Blackwell Publishing, Inc; Austral Ecology; 36; 8; 12-2011; 881-890
1442-9985
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1442-9993.2010.02235.x
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1442-9993.2010.02235.x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782190858272768
score 12.982451