Groundwater-surface water interactions in a semi-arid irrigated agricultural valley: A hydrometric and tracer-aided approach

Autores
Liberoff, Ana Laura; Poca, María
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The purpose of this study was to assess hydrological controls (e.g., rainfall, irrigation practices, river discharge, dam operation, evaporation) on surface (SW)- ground water (GW) interactions in an irrigated valley within semi-arid Patagonia Argentina (−65.49 W, −43.29 S). We combined different sampling designs (watershed/sub-watershed scales, longitudinal and monthly samplings) from 2015 to 2019 to investigate the temporal and spatial variation of hydrometrics, electrical conductivity (EC) and stable isotope composition of surface and ground water. Results showed that plant transpiration in the upper basin, evaporation in the middle basin and the reservoir dynamics modified water salinity and left an imprint in stable isotopes. Water tables in the irrigated valley were high (0.5–2 m level from soil surface) and presented higher salinity than river water. Groundwater salinity, temporal variation of water table levels and stable isotopes suggested that groundwater is subjected to evaporation, is recharged from field seepage and, at a lesser extent, from local rainwater. River salinity increased downstream of the irrigated valley during the whole study period (3 years), showing the effects of agriculture and urbanization. EC also responded to the opening and closing of irrigation channels. EC and daily discharge statistical analysis revealed that groundwater recharge the stream below a threshold discharge of 26 m.s−1; with river salinity increasing linearly as daily discharge decrease. This study illustrates the deep modifications that agricultural systems, mainly surface irrigation, produce on semiarid watersheds. Given that SW and GW components are currently not isolated and flow regulation and irrigation practices are playing a critical role in soil quality and river chemistry at low flow conditions, a conjunctive water management strategy must be implemented in order to prevent further land and water quality degradation.
Fil: Liberoff, Ana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico para el Estudio de los Ecosistemas Continentales; Argentina
Fil: Poca, María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Materia
ENVIRONMENTAL TRACERS
HYDROLOGICAL DYNAMICS
PATAGONIA
WATER QUALITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/220425

id CONICETDig_65cd18258c99f1fe88710eff029f1d4c
oai_identifier_str oai:ri.conicet.gov.ar:11336/220425
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Groundwater-surface water interactions in a semi-arid irrigated agricultural valley: A hydrometric and tracer-aided approachLiberoff, Ana LauraPoca, MaríaENVIRONMENTAL TRACERSHYDROLOGICAL DYNAMICSPATAGONIAWATER QUALITYhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The purpose of this study was to assess hydrological controls (e.g., rainfall, irrigation practices, river discharge, dam operation, evaporation) on surface (SW)- ground water (GW) interactions in an irrigated valley within semi-arid Patagonia Argentina (−65.49 W, −43.29 S). We combined different sampling designs (watershed/sub-watershed scales, longitudinal and monthly samplings) from 2015 to 2019 to investigate the temporal and spatial variation of hydrometrics, electrical conductivity (EC) and stable isotope composition of surface and ground water. Results showed that plant transpiration in the upper basin, evaporation in the middle basin and the reservoir dynamics modified water salinity and left an imprint in stable isotopes. Water tables in the irrigated valley were high (0.5–2 m level from soil surface) and presented higher salinity than river water. Groundwater salinity, temporal variation of water table levels and stable isotopes suggested that groundwater is subjected to evaporation, is recharged from field seepage and, at a lesser extent, from local rainwater. River salinity increased downstream of the irrigated valley during the whole study period (3 years), showing the effects of agriculture and urbanization. EC also responded to the opening and closing of irrigation channels. EC and daily discharge statistical analysis revealed that groundwater recharge the stream below a threshold discharge of 26 m.s−1; with river salinity increasing linearly as daily discharge decrease. This study illustrates the deep modifications that agricultural systems, mainly surface irrigation, produce on semiarid watersheds. Given that SW and GW components are currently not isolated and flow regulation and irrigation practices are playing a critical role in soil quality and river chemistry at low flow conditions, a conjunctive water management strategy must be implemented in order to prevent further land and water quality degradation.Fil: Liberoff, Ana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico para el Estudio de los Ecosistemas Continentales; ArgentinaFil: Poca, María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaElsevier2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/220425Liberoff, Ana Laura; Poca, María; Groundwater-surface water interactions in a semi-arid irrigated agricultural valley: A hydrometric and tracer-aided approach; Elsevier; Science of the Total Environment; 903; 166625; 12-2023; 1-340048-96971879-1026CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0048969723052506info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scitotenv.2023.166625info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:50Zoai:ri.conicet.gov.ar:11336/220425instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:50.61CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Groundwater-surface water interactions in a semi-arid irrigated agricultural valley: A hydrometric and tracer-aided approach
title Groundwater-surface water interactions in a semi-arid irrigated agricultural valley: A hydrometric and tracer-aided approach
spellingShingle Groundwater-surface water interactions in a semi-arid irrigated agricultural valley: A hydrometric and tracer-aided approach
Liberoff, Ana Laura
ENVIRONMENTAL TRACERS
HYDROLOGICAL DYNAMICS
PATAGONIA
WATER QUALITY
title_short Groundwater-surface water interactions in a semi-arid irrigated agricultural valley: A hydrometric and tracer-aided approach
title_full Groundwater-surface water interactions in a semi-arid irrigated agricultural valley: A hydrometric and tracer-aided approach
title_fullStr Groundwater-surface water interactions in a semi-arid irrigated agricultural valley: A hydrometric and tracer-aided approach
title_full_unstemmed Groundwater-surface water interactions in a semi-arid irrigated agricultural valley: A hydrometric and tracer-aided approach
title_sort Groundwater-surface water interactions in a semi-arid irrigated agricultural valley: A hydrometric and tracer-aided approach
dc.creator.none.fl_str_mv Liberoff, Ana Laura
Poca, María
author Liberoff, Ana Laura
author_facet Liberoff, Ana Laura
Poca, María
author_role author
author2 Poca, María
author2_role author
dc.subject.none.fl_str_mv ENVIRONMENTAL TRACERS
HYDROLOGICAL DYNAMICS
PATAGONIA
WATER QUALITY
topic ENVIRONMENTAL TRACERS
HYDROLOGICAL DYNAMICS
PATAGONIA
WATER QUALITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The purpose of this study was to assess hydrological controls (e.g., rainfall, irrigation practices, river discharge, dam operation, evaporation) on surface (SW)- ground water (GW) interactions in an irrigated valley within semi-arid Patagonia Argentina (−65.49 W, −43.29 S). We combined different sampling designs (watershed/sub-watershed scales, longitudinal and monthly samplings) from 2015 to 2019 to investigate the temporal and spatial variation of hydrometrics, electrical conductivity (EC) and stable isotope composition of surface and ground water. Results showed that plant transpiration in the upper basin, evaporation in the middle basin and the reservoir dynamics modified water salinity and left an imprint in stable isotopes. Water tables in the irrigated valley were high (0.5–2 m level from soil surface) and presented higher salinity than river water. Groundwater salinity, temporal variation of water table levels and stable isotopes suggested that groundwater is subjected to evaporation, is recharged from field seepage and, at a lesser extent, from local rainwater. River salinity increased downstream of the irrigated valley during the whole study period (3 years), showing the effects of agriculture and urbanization. EC also responded to the opening and closing of irrigation channels. EC and daily discharge statistical analysis revealed that groundwater recharge the stream below a threshold discharge of 26 m.s−1; with river salinity increasing linearly as daily discharge decrease. This study illustrates the deep modifications that agricultural systems, mainly surface irrigation, produce on semiarid watersheds. Given that SW and GW components are currently not isolated and flow regulation and irrigation practices are playing a critical role in soil quality and river chemistry at low flow conditions, a conjunctive water management strategy must be implemented in order to prevent further land and water quality degradation.
Fil: Liberoff, Ana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico para el Estudio de los Ecosistemas Continentales; Argentina
Fil: Poca, María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
description The purpose of this study was to assess hydrological controls (e.g., rainfall, irrigation practices, river discharge, dam operation, evaporation) on surface (SW)- ground water (GW) interactions in an irrigated valley within semi-arid Patagonia Argentina (−65.49 W, −43.29 S). We combined different sampling designs (watershed/sub-watershed scales, longitudinal and monthly samplings) from 2015 to 2019 to investigate the temporal and spatial variation of hydrometrics, electrical conductivity (EC) and stable isotope composition of surface and ground water. Results showed that plant transpiration in the upper basin, evaporation in the middle basin and the reservoir dynamics modified water salinity and left an imprint in stable isotopes. Water tables in the irrigated valley were high (0.5–2 m level from soil surface) and presented higher salinity than river water. Groundwater salinity, temporal variation of water table levels and stable isotopes suggested that groundwater is subjected to evaporation, is recharged from field seepage and, at a lesser extent, from local rainwater. River salinity increased downstream of the irrigated valley during the whole study period (3 years), showing the effects of agriculture and urbanization. EC also responded to the opening and closing of irrigation channels. EC and daily discharge statistical analysis revealed that groundwater recharge the stream below a threshold discharge of 26 m.s−1; with river salinity increasing linearly as daily discharge decrease. This study illustrates the deep modifications that agricultural systems, mainly surface irrigation, produce on semiarid watersheds. Given that SW and GW components are currently not isolated and flow regulation and irrigation practices are playing a critical role in soil quality and river chemistry at low flow conditions, a conjunctive water management strategy must be implemented in order to prevent further land and water quality degradation.
publishDate 2023
dc.date.none.fl_str_mv 2023-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/220425
Liberoff, Ana Laura; Poca, María; Groundwater-surface water interactions in a semi-arid irrigated agricultural valley: A hydrometric and tracer-aided approach; Elsevier; Science of the Total Environment; 903; 166625; 12-2023; 1-34
0048-9697
1879-1026
CONICET Digital
CONICET
url http://hdl.handle.net/11336/220425
identifier_str_mv Liberoff, Ana Laura; Poca, María; Groundwater-surface water interactions in a semi-arid irrigated agricultural valley: A hydrometric and tracer-aided approach; Elsevier; Science of the Total Environment; 903; 166625; 12-2023; 1-34
0048-9697
1879-1026
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0048969723052506
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.scitotenv.2023.166625
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613004736331776
score 13.070432