A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice
- Autores
- Pelaitay, Gustavo Andrés; Staronbisky, Maia
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we introduce the concept of tense operators on pseudocomplemented distributive lattices. Specifically, we utilize the Kalman construction to establish a categorical equivalence between the algebraic category of tense KAN-algebras and a category whose objects are pairs (A, S), where A is a tense pseudocomplemented distributive lattice, and S is a tense Boolean filter of A.
Fil: Pelaitay, Gustavo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina
Fil: Staronbisky, Maia. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Económicas; Argentina - Materia
-
TENSE OPERATORS
KAN-ALGEBRAS
BOOLEAN FILTER
KALMAN CONSTRUCTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/235383
Ver los metadatos del registro completo
id |
CONICETDig_6519db4287b07f260c2397c2c04793cb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/235383 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Categorical Equivalence for Tense Pseudocomplemented Distributive LatticePelaitay, Gustavo AndrésStaronbisky, MaiaTENSE OPERATORSKAN-ALGEBRASBOOLEAN FILTERKALMAN CONSTRUCTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we introduce the concept of tense operators on pseudocomplemented distributive lattices. Specifically, we utilize the Kalman construction to establish a categorical equivalence between the algebraic category of tense KAN-algebras and a category whose objects are pairs (A, S), where A is a tense pseudocomplemented distributive lattice, and S is a tense Boolean filter of A.Fil: Pelaitay, Gustavo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; ArgentinaFil: Staronbisky, Maia. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Económicas; ArgentinaCollege Publications2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/235383Pelaitay, Gustavo Andrés; Staronbisky, Maia; A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice; College Publications; Journal of Applied Logics; 11; 2; 3-2024; 1-152631-98102631-9829CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://collegepublications.co.uk/ifcolog/?00064info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:34Zoai:ri.conicet.gov.ar:11336/235383instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:35.036CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice |
title |
A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice |
spellingShingle |
A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice Pelaitay, Gustavo Andrés TENSE OPERATORS KAN-ALGEBRAS BOOLEAN FILTER KALMAN CONSTRUCTION |
title_short |
A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice |
title_full |
A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice |
title_fullStr |
A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice |
title_full_unstemmed |
A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice |
title_sort |
A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice |
dc.creator.none.fl_str_mv |
Pelaitay, Gustavo Andrés Staronbisky, Maia |
author |
Pelaitay, Gustavo Andrés |
author_facet |
Pelaitay, Gustavo Andrés Staronbisky, Maia |
author_role |
author |
author2 |
Staronbisky, Maia |
author2_role |
author |
dc.subject.none.fl_str_mv |
TENSE OPERATORS KAN-ALGEBRAS BOOLEAN FILTER KALMAN CONSTRUCTION |
topic |
TENSE OPERATORS KAN-ALGEBRAS BOOLEAN FILTER KALMAN CONSTRUCTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we introduce the concept of tense operators on pseudocomplemented distributive lattices. Specifically, we utilize the Kalman construction to establish a categorical equivalence between the algebraic category of tense KAN-algebras and a category whose objects are pairs (A, S), where A is a tense pseudocomplemented distributive lattice, and S is a tense Boolean filter of A. Fil: Pelaitay, Gustavo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina Fil: Staronbisky, Maia. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Económicas; Argentina |
description |
In this paper, we introduce the concept of tense operators on pseudocomplemented distributive lattices. Specifically, we utilize the Kalman construction to establish a categorical equivalence between the algebraic category of tense KAN-algebras and a category whose objects are pairs (A, S), where A is a tense pseudocomplemented distributive lattice, and S is a tense Boolean filter of A. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/235383 Pelaitay, Gustavo Andrés; Staronbisky, Maia; A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice; College Publications; Journal of Applied Logics; 11; 2; 3-2024; 1-15 2631-9810 2631-9829 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/235383 |
identifier_str_mv |
Pelaitay, Gustavo Andrés; Staronbisky, Maia; A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice; College Publications; Journal of Applied Logics; 11; 2; 3-2024; 1-15 2631-9810 2631-9829 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://collegepublications.co.uk/ifcolog/?00064 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
College Publications |
publisher.none.fl_str_mv |
College Publications |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269293698351104 |
score |
13.13397 |