A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice

Autores
Pelaitay, Gustavo Andrés; Staronbisky, Maia
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we introduce the concept of tense operators on pseudocomplemented distributive lattices. Specifically, we utilize the Kalman construction to establish a categorical equivalence between the algebraic category of tense KAN-algebras and a category whose objects are pairs (A, S), where A is a tense pseudocomplemented distributive lattice, and S is a tense Boolean filter of A.
Fil: Pelaitay, Gustavo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina
Fil: Staronbisky, Maia. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Económicas; Argentina
Materia
TENSE OPERATORS
KAN-ALGEBRAS
BOOLEAN FILTER
KALMAN CONSTRUCTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/235383

id CONICETDig_6519db4287b07f260c2397c2c04793cb
oai_identifier_str oai:ri.conicet.gov.ar:11336/235383
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Categorical Equivalence for Tense Pseudocomplemented Distributive LatticePelaitay, Gustavo AndrésStaronbisky, MaiaTENSE OPERATORSKAN-ALGEBRASBOOLEAN FILTERKALMAN CONSTRUCTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we introduce the concept of tense operators on pseudocomplemented distributive lattices. Specifically, we utilize the Kalman construction to establish a categorical equivalence between the algebraic category of tense KAN-algebras and a category whose objects are pairs (A, S), where A is a tense pseudocomplemented distributive lattice, and S is a tense Boolean filter of A.Fil: Pelaitay, Gustavo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; ArgentinaFil: Staronbisky, Maia. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Económicas; ArgentinaCollege Publications2024-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/235383Pelaitay, Gustavo Andrés; Staronbisky, Maia; A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice; College Publications; Journal of Applied Logics; 11; 2; 3-2024; 1-152631-98102631-9829CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://collegepublications.co.uk/ifcolog/?00064info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:34Zoai:ri.conicet.gov.ar:11336/235383instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:35.036CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice
title A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice
spellingShingle A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice
Pelaitay, Gustavo Andrés
TENSE OPERATORS
KAN-ALGEBRAS
BOOLEAN FILTER
KALMAN CONSTRUCTION
title_short A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice
title_full A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice
title_fullStr A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice
title_full_unstemmed A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice
title_sort A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice
dc.creator.none.fl_str_mv Pelaitay, Gustavo Andrés
Staronbisky, Maia
author Pelaitay, Gustavo Andrés
author_facet Pelaitay, Gustavo Andrés
Staronbisky, Maia
author_role author
author2 Staronbisky, Maia
author2_role author
dc.subject.none.fl_str_mv TENSE OPERATORS
KAN-ALGEBRAS
BOOLEAN FILTER
KALMAN CONSTRUCTION
topic TENSE OPERATORS
KAN-ALGEBRAS
BOOLEAN FILTER
KALMAN CONSTRUCTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, we introduce the concept of tense operators on pseudocomplemented distributive lattices. Specifically, we utilize the Kalman construction to establish a categorical equivalence between the algebraic category of tense KAN-algebras and a category whose objects are pairs (A, S), where A is a tense pseudocomplemented distributive lattice, and S is a tense Boolean filter of A.
Fil: Pelaitay, Gustavo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina
Fil: Staronbisky, Maia. Universidad Nacional de San Juan. Facultad de Filosofía, Humanidades y Artes. Instituto de Ciencias Básicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Económicas; Argentina
description In this paper, we introduce the concept of tense operators on pseudocomplemented distributive lattices. Specifically, we utilize the Kalman construction to establish a categorical equivalence between the algebraic category of tense KAN-algebras and a category whose objects are pairs (A, S), where A is a tense pseudocomplemented distributive lattice, and S is a tense Boolean filter of A.
publishDate 2024
dc.date.none.fl_str_mv 2024-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/235383
Pelaitay, Gustavo Andrés; Staronbisky, Maia; A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice; College Publications; Journal of Applied Logics; 11; 2; 3-2024; 1-15
2631-9810
2631-9829
CONICET Digital
CONICET
url http://hdl.handle.net/11336/235383
identifier_str_mv Pelaitay, Gustavo Andrés; Staronbisky, Maia; A Categorical Equivalence for Tense Pseudocomplemented Distributive Lattice; College Publications; Journal of Applied Logics; 11; 2; 3-2024; 1-15
2631-9810
2631-9829
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://collegepublications.co.uk/ifcolog/?00064
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv College Publications
publisher.none.fl_str_mv College Publications
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269293698351104
score 13.13397